forked from apratap/PCBC_DataExplorer_ShinyApp
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgeneExpression_heatMap.R
executable file
·51 lines (47 loc) · 2.11 KB
/
geneExpression_heatMap.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#load the memoised version of pheatmap
source("memoised_pheatmap.R")
#gene expression heatmap logic
get_geneExpression_heatMap <- function(m, annotation = NA ,
clustering_distance_rows = "correlation",
clustering_distance_cols = "correlation",
explicit_rownames = 'none', ...){
if(nrow(m) <= 2){
return(memoised_pheatmap(m, cluster_rows=FALSE,
scale="none",
annotation = annotation,
drawRowD = FALSE,
border_color = NA,
explicit_rownames = explicit_rownames,...))
}
if(nrow(m) >= 70){
#removing those genes which dont vary much across the samples
#so any gene with SD < .2 across the samples will be dropped
drop_genes <- which(apply(m,1,sd) < .2)
#following step to remove the bug seen
#when m <- m[-drop_genes,] is done directly and length(drop_genes) = 0
if(length(drop_genes) != 0){
m <- m[-drop_genes,] #filtering a mat , IMP
#also remove the same from the explicit rownames as those genes are taken out in anycase
explicit_rownames <- explicit_rownames[-drop_genes] #filtering a vector no , needed
}
}
#check if remaining genes can be clustered
if(nrow(m) < 3){
error_msg <- sprintf('After removing genes with SD < .20 %d genes remain \n
More than 2 needed to cluster \n\n', nrow(m))
stop(error_msg)
}
else{ #do the clustering and heatmap
#scaling genes across experiments
mat.scaled <- t(scale(t(m)))
memoised_pheatmap(mat.scaled,
scale="none",
annotation = annotation,
clustering_distance_rows = clustering_distance_rows,
clustering_distance_cols = clustering_distance_cols,
clustering_method = "average",
border_color = NA,
drawRowD = FALSE,
explicit_rownames = explicit_rownames,...)
}
}