-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrto7.py
461 lines (356 loc) · 19.3 KB
/
rto7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import pandas as pd
import numpy as np
import scipy as sp
import math
from string import join
import re
import json
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import *
from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import *
from sklearn.linear_model import *
from sklearn.feature_extraction import DictVectorizer
from sklearn import metrics
from sklearn import svm
from sklearn.svm import LinearSVC
from sklearn.model_selection import StratifiedKFold
from sklearn.neighbors import *
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
# from graphviz import Digraph
from sklearn import tree
from sklearn.preprocessing import LabelBinarizer
import os
import requests
import datetime
pd.options.mode.chained_assignment = None
print 'Execution start time: ', datetime.datetime.now()
# Loading the data as a DataFrame.
print 'Reading CSV'
# df_raw = pd.read_csv("~/rto-challenge-dataset.csv", encoding="ISO-8859-1")
df_raw = pd.read_table('~/rto-challenge-dataset.csv', sep=',', keep_default_na=True, na_values=['NA'])
print 'Reading CSV done!'
# print df_raw.drop_duplicates(subset=['feature_categorical_3'])
print 'df_raw.shape: ', df_raw.shape
# -----------------------Defining the column types--------------------
label_col = ['label']
feature_cols = ['feature_categorical_3', 'feature_categorical_4',
'feature_categorical_5', 'feature_categorical_6', 'feature_categorical_7', 'feature_categorical_8',
'feature_categorical_9', 'feature_categorical_10', 'feature_numerical_1', 'feature_numerical_2',
'feature_numerical_3', 'feature_numerical_4', 'feature_numerical_5', 'feature_numerical_6',
'feature_numerical_7', 'feature_numerical_8', 'feature_numerical_9', 'feature_numerical_10',
'feature_numerical_11', 'feature_numerical_12', 'feature_numerical_13', 'feature_numerical_14',
'feature_numerical_15', 'feature_numerical_16', 'feature_numerical_17', 'feature_numerical_18',
'feature_numerical_19', 'feature_numerical_20', 'feature_numerical_21', 'feature_numerical_22',
'feature_numerical_23', 'feature_numerical_24', 'feature_numerical_25', 'feature_numerical_26',
'feature_numerical_27', 'feature_numerical_28', 'feature_numerical_29', 'feature_numerical_30',
'feature_numerical_31', 'feature_numerical_32', 'feature_numerical_33', 'feature_numerical_34',
'feature_numerical_35', 'feature_numerical_36', 'timestamp']
categorical_columns = ['feature_categorical_3',
'feature_categorical_4', 'feature_categorical_5', 'feature_categorical_6',
'feature_categorical_7', 'feature_categorical_8', 'feature_categorical_9',
'feature_categorical_10']
# ['feature_categorical_1', 'feature_categorical_2', 'feature_categorical_3',
# 'feature_categorical_4', 'feature_categorical_5', 'feature_categorical_6',
# 'feature_categorical_7', 'feature_categorical_8', 'feature_categorical_9',
# 'feature_categorical_10']
numerical_columns = ['feature_numerical_1', 'feature_numerical_2', 'feature_numerical_3', 'feature_numerical_4',
'feature_numerical_5', 'feature_numerical_6', 'feature_numerical_7', 'feature_numerical_8',
'feature_numerical_9', 'feature_numerical_10', 'feature_numerical_11', 'feature_numerical_12',
'feature_numerical_13', 'feature_numerical_14', 'feature_numerical_15', 'feature_numerical_16',
'feature_numerical_17', 'feature_numerical_18', 'feature_numerical_19', 'feature_numerical_20',
'feature_numerical_21', 'feature_numerical_22', 'feature_numerical_23', 'feature_numerical_24',
'feature_numerical_25', 'feature_numerical_26', 'feature_numerical_27', 'feature_numerical_28',
'feature_numerical_29', 'feature_numerical_30', 'feature_numerical_31', 'feature_numerical_32',
'feature_numerical_33', 'feature_numerical_34', 'feature_numerical_35', 'feature_numerical_36']
timestamp_column = ['timestamp']
# ------------------Numerical estimators-----------------------
# Transformer to impute missing values using mean of the column.
class MissingValueImputer(BaseEstimator, TransformerMixin):
def __init__(self, col=None):
self.mean = 0
self.col = col
def transform(self, X):
X[self.col] = X[self.col].fillna(self.mean)
return X
def fit(self, X, y=None):
self.mean = X[self.col].mean()
return self
# Transformer that computes log(1+x) on the specified columns
class Log1p(BaseEstimator, TransformerMixin):
def __init__(self, cols=None):
self.cols = cols
def transform(self, X):
for col in self.cols: X[col] = X[col].apply(lambda x: math.log1p(x))
return X
def fit(self, X, y=None):
return self
# Transfomer for performing one hot encoding on a specified categorical column
class OneHotEncoder(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def transform(self, X):
# return pd.get_dummies(X)
pass
def fit(self, X, y=None):
return self
class MultiColumnLabelEncoder:
def __init__(self, columns=None):
self.columns = columns # array of column names to encode
def fit(self, X, y=None):
return self # not relevant here
def transform(self, X):
'''
Transforms columns of X specified in self.columns using
LabelEncoder(). If no columns specified, transforms all
columns in X.
'''
output = X.copy()
if self.columns is not None:
for col in self.columns:
output[col] = LabelEncoder().fit_transform(output[col])
else:
for colname, col in output.iteritems():
output[colname] = LabelEncoder().fit_transform(col)
return output
def fit_transform(self, X, y=None):
return self.fit(X, y).transform(X)
# Transformer that bins the specified numeric column along the specified bins
class Binning(BaseEstimator, TransformerMixin):
def __init__(self, col, bins):
self.col = col
self.bins = bins
def transform(self, X):
X[self.col] = [str(i) for i in np.digitize(X[self.col].values, self.bins)]
return X
def fit(self, X, y=None):
return self
# ---------------------Selectors-----------------------------
# Stateless transformer for selecting a specified column
class ColumnSelector(BaseEstimator, TransformerMixin):
def __init__(self, col):
self.col = col
def transform(self, X):
return X[self.col]
def fit(self, X, y=None):
return self
# Stateless transformer to selects one or more column from DataFrame.
class DFSubsetSelector(BaseEstimator, TransformerMixin):
def __init__(self, cols):
self.cols = cols
def transform(self, X):
return X[self.cols]
def fit(self, X, y=None):
return self
# --------------Converters-------------------------------
# Transformer to convert a DataFrame to a sparse matrix
class ConvertDFToMatrix(BaseEstimator, TransformerMixin):
def transform(self, X):
return sp.sparse.csr.csr_matrix(X.values)
def fit(self, X, y=None):
return self
# Transformer to convert a single column DataFrame to a sparse matrix
class ConvertDFToVector(BaseEstimator, TransformerMixin):
def transform(self, X):
return np.ravel(X.values)
def fit(self, X, y=None):
return self
class StringToTimeStampConverter(BaseEstimator, TransformerMixin):
def transform(self, X):
return pd.to_datetime(X)
def fit(self, X, y=None):
return self
class TemporalFeatureExtractor(BaseEstimator, TransformerMixin):
def transform(self, X):
if not isinstance(X, pd.Series):
raise TypeError('The argument passed to TemporalFeatureExtractor must be a Pandas Series')
if X.dtype.name != 'datetime64[ns]':
raise TypeError(
'The argument passed to TemporalFeatureExtractor must be a Pandas Series with dtype==datetime64[ns]')
temporal_df_columns = ['month', 'day', 'dayofweek', 'hour', 'minute', 'weekofyear', 'quarter', 'dayofyear',
'epoch']
_n_rows = X.shape[0]
_n_columns = len(temporal_df_columns)
_my_array = np.zeros((_n_rows, _n_columns))
for idx, timestamp in enumerate(X):
_my_array[idx, :] = [timestamp.month, timestamp.day, timestamp.dayofweek,
timestamp.hour, timestamp.minute, timestamp.weekofyear,
timestamp.quarter, timestamp.dayofyear, timestamp.value]
# print 'Mean: ', _my_array[:, 8].mean()
_my_array[:, 8] = _my_array[:, 8] - 1.47664006845e+18
return pd.DataFrame(data=_my_array, columns=temporal_df_columns)
def fit(self, X, y=None):
return self
class MyDictVectoriser(BaseEstimator, TransformerMixin):
def __init__(self, cols):
self.cols = cols
def transform(self, X):
return X[self.cols].to_dict(orient='str')
def fit(self, X, y=None):
return self
class MyCategorizationFunction(BaseEstimator, TransformerMixin):
def __init__(self, cols):
self.cols = cols
def transform(self, X):
if not type(X) is pd.DataFrame:
TypeError('Only a Pandas DataFrame can be passed to MyCategorizationFunction.transform()')
X = pd.DataFrame(X)
for col in self.cols:
s = pd.Series(X[col], dtype="category")
categories = s.cat.categories
pass
def fit(self, X, y=None):
return self
# --------------------Constructing the pipelines-----------
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import *
from sklearn.ensemble import *
from sklearn.model_selection import GridSearchCV
numerical_feature_extractor = Pipeline([
('selector', DFSubsetSelector(numerical_columns)),
('imputer', Imputer())
# ('df_to_matrix', ConvertDFToMatrix())
])
categorical_feature_extractor = Pipeline([
('selector', DFSubsetSelector(categorical_columns)),
# ('dict_vectorizer', DictVectorizer())
# ('one_hot_encoder', OneHotEncoder())
# ('imputer', Imputer(strategy='median')),
('label_encoder', MultiColumnLabelEncoder(categorical_columns)),
# ('label_binarizer', LabelBinarizer(sparse_output=True))
('my_categorization_function', MyCategorizationFunction(categorical_columns))
])
categorical_feature_extractor_2 = Pipeline([
('selector', DFSubsetSelector(categorical_columns)),
# ('dict_vectorizer', DictVectorizer())
('one_hot_encoder', OneHotEncoder())
# ('imputer', Imputer(strategy='median')),
# ('label_encoder', MultiColumnLabelEncoder(categorical_columns)),
# ('label_binarizer', LabelBinarizer(sparse_output=True))
# ('my_categorization_function', MyCategorizationFunction(categorical_columns))
])
timestamp_feature_extractor = Pipeline([
('selector', ColumnSelector('timestamp')),
('string_timestamp_converter', StringToTimeStampConverter()),
('temporal_feature_extractor', TemporalFeatureExtractor())
])
all_feature_extractor_preprocessor = FeatureUnion(
transformer_list=[('numerical_column_extractor', numerical_feature_extractor),
('categorical_column_extractor', categorical_feature_extractor_2),
('temporal_feature_extractor', timestamp_feature_extractor)
])
# feature_selector = SelectKBest(score_func=chi2, k=10)
# learner = AdaBoostRegressor(n_estimators=100, random_state=42, learning_rate=0.1)
# learner = GradientBoostingClassifier(n_estimators=200, learning_rate=0.1, max_depth=1, random_state=0)
# learner = TheilSenRegressor()
# learner = BernoulliNB()
feature_selector = SelectPercentile(score_func=f_classif, percentile=25)
# feature_selector = SelectFromModel(
# RandomForestClassifier(n_jobs=-1, n_estimators=100, max_depth=13, random_state=42, min_samples_split=6,
# min_impurity_split=0.05, bootstrap=False))
# feature_selector = SelectFromModel(estimator=ExtraTreesClassifier())
clf1 = LogisticRegression()
clf2 = RandomForestClassifier(n_jobs=-1, n_estimators=100, max_depth=13, random_state=42, min_samples_split=6,
min_impurity_split=0.05, bootstrap=False)
clf3 = GradientBoostingClassifier(n_estimators=200, learning_rate=0.1, max_depth=1, random_state=0)
# clf4 = AdaBoostRegressor(n_estimators=100, random_state=42, learning_rate=0.1)
# clf5 = KNeighborsClassifier()
learner = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gb', clf3)],
voting='soft', n_jobs=-1,
weights=[1, 3, 1])
learner2 = DecisionTreeClassifier(min_samples_split=10)
learner3 = MLPClassifier(hidden_layer_sizes=(100, 50, 10))
final_pipeline = Pipeline([('feature_extractor_preprocessor', all_feature_extractor_preprocessor),
('imputer', Imputer()),
('feature_selector', feature_selector),
('polynomial', PolynomialFeatures(degree=2)),
('learner', clf2)])
# --------------------Splitting the data-----------------
X_train_raw, X_test_raw, Y_train_raw, Y_test_raw = train_test_split(df_raw[feature_cols], df_raw[label_col],
test_size=.2, random_state=42, train_size=.8,
stratify=df_raw[label_col])
print 'X_train_raw.shape: ', X_train_raw.shape
print 'X_test_raw.shape: ', X_test_raw.shape
print 'Y_train_raw.shape: ', Y_train_raw.shape
print 'Y_test_raw.shape: ', Y_test_raw.shape
df_train = X_train_raw.merge(Y_train_raw, left_index=True, right_index=True)
df_test = X_test_raw.merge(Y_test_raw, left_index=True, right_index=True)
# splitting training data into input and target
# obtaining the input features
df_train_X = df_train[feature_cols]
# obtaining the target
df_train_Y = df_train[label_col]
# creating a dict object to store the true labels for train and test cases
# actual_Y={}
# transforming the target
actual_Y = {'train': df_train_Y[label_col]}
df_test_X = df_test[feature_cols]
# obtaining target and transforming it
df_test_Y = df_test[label_col]
# transforming the test target as ell
actual_Y['test'] = df_test_Y[label_col]
class Model:
def __init__(self, pipeline):
self.pipeline = pipeline
def train(self, training_data_X, training_data_Y):
# self.pipeline = final_pipeline
self.pipeline.fit(training_data_X, training_data_Y)
# _tree = self.pipeline.steps[4][1].tree_
#
# from StringIO import StringIO
# out = StringIO()
# myTree = self.pipeline.steps[4][1].tree_
# out = tree.export_graphviz(self.pipeline.steps[4][1], out_file='./graph.gv')
# # tree.graph_from_dot_data(out.getvalue()).write_pdf("somefile.pdf")
# # dot = Digraph(comment='The Round Table')
# # dot.render('./graph.gv', view=True)
# i=0
def predict(self, input_json):
record_df = pd.read_json(input_json)
return json.dumps({'prediction': self.pipeline.predict_proba(record_df).tolist()[0][1]})
def predict_local(self, input_df):
prediction = self.pipeline.predict(input_df)
return prediction
model = Model(final_pipeline)
print 'Training...'
# print 'Sample training rows: ', df_train_X.head(3)
# print 'Training data shape: ', df_train_X.shape
model.train(df_train_X, actual_Y['train'])
print 'Training done.'
print 'Predicting a test record...'
test_record = '[{"timestamp": "2016-10-13 17:00:00","feature_numerical_20": 0.798,"feature_numerical_22": 0.74,"feature_categorical_5": "9ae17c6551b342d5d71f080e0099fae46f861342","feature_numerical_21": 0.00132974832762,"feature_categorical_6": "b87025b357ed093c17f9999cefcf4baa93d02a70","feature_numerical_25": 0.0483253588517,"feature_numerical_30": 0.040404040404,"feature_numerical_6": 0,"feature_numerical_24": 0.989629964876,"feature_numerical_31": 0.0839694656489,"feature_numerical_34": 0.0366972477064,"feature_numerical_2": 0.0357142857143,"feature_categorical_1": "0822e3e95f846d2b81629d537615d9101db7d0c5","feature_categorical_3": "e4c15bf37310ad233fee194de3f00fbd2f91dee1","feature_numerical_36": 0.00995836802664,"feature_categorical_7": "e5353879bd69bfddcb465dad176ff52db8319d6f","feature_numerical_26": 0.00096468348751,"feature_categorical_9": "b85ab32eaa572c8016edf68011078dceed8149e5","feature_categorical_2": "d832ad51b52348d11415d900454cb72d944162ff","feature_numerical_28": 0.219459459459,"feature_numerical_12": 0,"feature_numerical_29": 0.0670731707317,"feature_numerical_16": 0.225806451613,"feature_categorical_4": "88b33e4e12f75ac8bf792aebde41f1a090f3a612","feature_numerical_3": 0.00361010830325,"feature_categorical_8": "89f1ebf5ace10fe4d43c85a7ad419905164b9883","feature_numerical_8": 0.0881979695431,"feature_numerical_19": 0.001,"feature_numerical_10": 0.001,"feature_numerical_4": 0.3337,"feature_numerical_1": 0,"feature_numerical_35": 0.166666666667,"feature_numerical_32": 0.00676818950931,"feature_numerical_23": 0.989689806228,"feature_numerical_11": 0,"feature_numerical_5": 0.0033,"feature_numerical_27": 0,"feature_numerical_13": 0.0165796360247,"feature_numerical_15": 0.0234908389585,"feature_numerical_33": 0,"feature_categorical_10": "d166e844a3f3f87149cc4f866eb998e9a751c72a","feature_numerical_9": 0.483544107247,"feature_numerical_14": 0.0148434759981,"feature_numerical_18": 0.00407763823194,"feature_numerical_7": 0.0192923007155,"feature_numerical_17": 0.00598011960239}]'
print model.predict(test_record)
print 'Predicting a test record... Done'
print 'Predicting the test set...'
print 'Pipeline Score: ', final_pipeline.score(df_test_X, actual_Y['test'])
pred_prob_Y = {}
pred_prob_Y['test'] = final_pipeline.predict_proba(df_test_X)[:, 1]
print 'ROC_AUC Score: ', metrics.roc_auc_score(actual_Y['test'], pred_prob_Y['test'])
# set environment variable
os.environ["ML_SDK_CONF_BUCKET"] = "ml-challenge-sdk"
# print 'Publishing to ModelHost...'
# from mlsdk.MLApi import MLApi
#
# print MLApi().modelhost_publish_new_model(model, "yaML")
# print 'Published.'
# 1st publication: (u'MD441', u'1.0.0')
# 2nd publication: (u'MD448', u'1.0.0')
# 3rd publication: (u'MD449', u'1.0.0')
# 3th publication: (u'MD498', u'1.0.0')
# ---------------Hyper-parameter optimization----------
# tuned_parameters = [{
# # 'estimators': [('lr', clf1), ('rf', clf2), ('gb', clf3)],
# # 'n_estimators': np.linspace(start=50, stop=350, num=31, endpoint=True),
# # 'max_depth': np.linspace(start=1, stop=31, num=31, endpoint=True),
# # 'min_samples_split': np.linspace(start=1, stop=10, num=10, endpoint=True),
# # 'min_impurity_split': np.linspace(start=0.01, stop=0.1, num=10, endpoint=True),
# # 'feature_selector__percentile': [20, 21, 22, 23, 24, 25]
# }]
# grid_search = GridSearchCV(estimator=final_pipeline, scoring='roc_auc', n_jobs=-1, param_grid=tuned_parameters)
# # grid_search.fit(df_train_X, actual_Y['train'])
# grid_search.fit(df_train_X, df_train_Y)
print 'Execution end time: ', datetime.datetime.now()