-
Notifications
You must be signed in to change notification settings - Fork 12
/
test.py
158 lines (121 loc) · 6.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
Copyright (c) 2022 Samsung Electronics Co., Ltd.
Author:
Abhijith Punnappurath (abhijith.p@samsung.com)
Licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at https://creativecommons.org/licenses/by-nc/4.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
For conditions of distribution and use, see the accompanying LICENSE.md file.
"""
from utils.unet import UNet
import argparse
import os, time, datetime
import numpy as np
from skimage.measure import compare_psnr, compare_ssim
import cv2
import torch
from pipeline.pipeline import run_pipeline
from pipeline.pipeline_utils import get_metadata, get_visible_raw_image
from utils.gen_utils import check_dir
def to_tensor(img):
img = torch.from_numpy(img.astype(np.float32))
img = img.unsqueeze(0).permute(0, 3, 1, 2)
return img
def from_tensor(img):
img = img.permute(0, 2, 3, 1)
img = img.cpu().detach().numpy()
return np.squeeze(img)
def log(*args, **kwargs):
print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S:"), *args, **kwargs)
def save_result(result, path):
path = path if path.find('.') != -1 else path + '.png'
ext = os.path.splitext(path)[-1]
if ext in ('.txt', '.dlm'):
np.savetxt(path, result, fmt='%2.4f')
else:
cv2.imwrite(path, result)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--set_dir', default='dataset/night_real', type=str, help='directory of test dataset')
parser.add_argument('--set_names', default='iso_1600,iso_3200', type=str, help='name of test dataset')
parser.add_argument('--model_dir', default='mymodel', type=str, help='directory of the model')
parser.add_argument('--model_name', default='bestmodel.pt', type=str, help='name of the model')
parser.add_argument('--result_dir', default='results', type=str, help='directory of results')
parser.add_argument('--save_result', default=True, type=bool, help='save image')
args = parser.parse_args()
stages = ['raw', 'active_area_cropping', 'linearization', 'normal', 'white_balance',
'demosaic']
params = {
'save_as': 'png', # options: 'jpg', 'png', 'tif', etc.
'white_balancer': 'default', # options: default, or self-defined module
'demosaicer': '', # options: '' for simple interpolation,
# 'EA' for edge-aware,
# 'VNG' for variable number of gradients,
# 'menon2007' for Menon's algorithm
'tone_curve': 'simple-s-curve', # options: 'simple-s-curve', 'default', or self-defined module
'output_stage': 'demosaic',
}
set_names_list = [item for item in args.set_names.split(',')]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = UNet(in_channels=3, out_channels=3, init_features=32)
model.load_state_dict(torch.load(os.path.join('models',args.model_dir, args.model_name)))
model = model.to(device)
model.eval() # Set model to evaluate mode
print('model loaded')
for folder_index, set_cur in enumerate(set_names_list):
print(set_cur)
fullsavepath = os.path.join(args.result_dir,
os.path.basename(args.set_dir) + '_' + set_cur + '_' + os.path.basename(args.model_dir) + '_' + args.model_name[:-3])
check_dir(args.result_dir)
check_dir(fullsavepath)
psnrs = []
ssims = []
fsrgb = open(os.path.join(fullsavepath, "results.txt"), "w")
for c, im in enumerate(sorted(os.listdir(os.path.join(args.set_dir, 'dng', set_cur)))):
print('Processing ' + str(c + 1))
if set_cur == 'iso_50':
x = cv2.imread(os.path.join(args.set_dir, 'clean_raw', im[:-4]+'.png'), cv2.IMREAD_UNCHANGED)
else:
x = get_visible_raw_image(os.path.join(args.set_dir, 'dng', set_cur, im))
meta_path = os.path.join(args.set_dir, 'dng', set_cur, im)
meta_data_org = get_metadata(meta_path)
x = run_pipeline(x, params=params, metadata=meta_data_org, stages=stages)
x = to_tensor(x)
x = x ** (1 / 2.2)
y = cv2.imread(os.path.join(args.set_dir, 'clean', im[:-4]+'.png'), cv2.IMREAD_UNCHANGED)
y = np.array(cv2.cvtColor(y, cv2.COLOR_BGR2RGB), dtype=np.float32)
if y.shape[0] > y.shape[1]:
y = np.rot90(y)
y = y.astype('uint8')
x = x.to(device)
start_time = time.time()
with torch.no_grad():
y_ = model(x) # inference
elapsed_time = time.time() - start_time
y_ = y_.cpu()
y_ = (y_).permute(0, 2, 3, 1).numpy()
y_ = np.clip(np.squeeze(y_), 0, 1)
y_ = (255 * y_).astype('uint8')
if args.save_result:
name, ext = os.path.splitext(im)
save_result(y_[:, :, [2, 1, 0]],
path=os.path.join(fullsavepath, name + '_output.png')) # save the result
psnr_x_ = compare_psnr(y, y_, data_range=255)
ssim_x_ = compare_ssim(y, y_, multichannel=True, data_range=255)
psnrs.append(psnr_x_)
ssims.append(ssim_x_)
log('{0:10s} \n PSNR = {1:2.2f}dB, SSIM = {2:1.4f}, Time = {3:2.4f} seconds'.format(im, psnr_x_,
ssim_x_, elapsed_time))
fsrgb.write('{0:10s} : PSNR = {1:2.2f}dB, SSIM = {2:1.4f}, Time = {3:2.4f} seconds \n'.format(im, psnr_x_,
ssim_x_, elapsed_time))
psnr_avg = np.mean(psnrs)
ssim_avg = np.mean(ssims)
psnrs.append(psnr_avg)
ssims.append(ssim_avg)
print()
log('Dataset: {0:10s} \n Avg. PSNR = {1:2.4f}dB, Avg. SSIM = {2:1.4f}'.format(set_cur, psnr_avg, ssim_avg))
fsrgb.write('\nDataset: {0:10s} \n Avg. PSNR = {1:2.4f}dB, Avg. SSIM = {2:1.4f}'.format(set_cur, psnr_avg, ssim_avg))
fsrgb.close()