-
Notifications
You must be signed in to change notification settings - Fork 23
/
ens-fge.py
72 lines (58 loc) · 2.54 KB
/
ens-fge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import time
import numpy as np
import torch
from scipy.special import logsumexp
from utils.utils import Logger, get_parser_ens, get_sd, read_models, get_model, get_targets, get_data
import warnings
warnings.filterwarnings("ignore")
def one_sample_pred(loader, model, **kwargs):
preds = []
model.eval()
for i, (input, target) in enumerate(loader):
input = input.cuda()
with torch.no_grad():
output = model(input, **kwargs)
log_probs = torch.nn.functional.log_softmax(output, dim=1)
preds.append(log_probs.cpu().data.numpy())
return np.vstack(preds)
def main():
parser = get_parser_ens()
args = parser.parse_args()
args.method = os.path.basename(__file__).split('-')[1][:-3]
if args.aug_test:
args.method = args.method + '_augment'
torch.backends.cudnn.benchmark = True
compute = {
'CIFAR10': ['VGG16BN', 'PreResNet110', 'PreResNet164', 'WideResNet28x10'],
'CIFAR100': ['VGG16BN', 'PreResNet110', 'PreResNet164', 'WideResNet28x10'],
'ImageNet': ['ResNet50']
}
for model in compute[args.dataset]:
args.model = model
logger = Logger(base='./logs/')
print('-'*5, 'Computing results of', model, 'on', args.dataset + '.', '-'*5)
loaders, num_classes = get_data(args)
targets = get_targets(loaders['test'], args)
args.num_classes = num_classes
model = get_model(args)
for run in range(1, 6):
log_probs = []
fnames = read_models(args,
base=os.path.expanduser(args.models_dir),
run=run if args.dataset != 'ImageNet' else -1)
fnames = sorted(fnames, key=lambda a: int(a.split('-')[-1].split('.')[0]))
for ns in range(100)[:min(len(fnames), 100 if args.dataset != 'ImageNet' else 50)]:
start = time.time()
model.load_state_dict(get_sd(fnames[ns], args))
ones_log_prob = one_sample_pred(loaders['test'], model)
log_probs.append(ones_log_prob)
logger.add_metrics_ts(ns, log_probs, targets, args, time_=start)
logger.save(args)
os.makedirs('.megacache', exist_ok=True)
logits_pth = '.megacache/logits_%s-%s-%s-%s-%s'
logits_pth = logits_pth % (args.dataset, args.model, args.method, ns+1, run)
log_prob = logsumexp(np.dstack(log_probs), axis=2) - np.log(ns+1)
print('Save final logprobs to %s' % logits_pth, end='\n\n')
np.save(logits_pth, log_prob)
main()