-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
98 lines (76 loc) · 3.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# partly from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/
# see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/LICENSE for license
import torch
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
import params
import time
import random
from models import TimestampRegressionModel
from visualizer import Visualizer
from image_dataset import ImageDataset
import image_dataset as id
class ImageDatasetDataLoader():
def __init__(self, dataset):
self.dataset = dataset
print("Initialized dataset %s" % type(self.dataset).__name__)
self.dataloader = torch.utils.data.DataLoader(self.dataset, batch_size=params.BATCH_SIZE, shuffle=True, num_workers=8)
def __len__(self):
return len(self.dataset)
def __iter__(self):
for _, data in enumerate(self.dataloader):
yield data
if __name__ == '__main__':
total_iters = 0
dataset_train, dataset_test = id.build_split()
dataset_train = ImageDatasetDataLoader(dataset_train)
dataset_test = ImageDatasetDataLoader(dataset_test)
dataset_size = len(dataset_train) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = TimestampRegressionModel()
visualizer = Visualizer()
for epoch in range(params.EPOCHS):
print("Running epoch %d..." % epoch)
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
def validate():
losses = []
for i, input_real in tqdm(enumerate(dataset_test)):
model.set_input(input_real)
test_loss = float(model.test(save=(i == 0)))
losses += [test_loss]
model.val_loss = sum(losses) / len(losses)
validate()
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
print('=== Running Epoch with lr', get_lr(model.optimizer_R), ' ===')
for i, input_real in enumerate(dataset_train): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % 512 == 0:
t_data = iter_start_time - iter_data_time
# if total_iters % (1024 * 64) == 0:
# validate()
total_iters += params.BATCH_SIZE
epoch_iter += params.BATCH_SIZE
model.set_input(input_real) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % 512 == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / params.BATCH_SIZE
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
# validation
if total_iters % 20000 == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'latest'
# model.save_networks(save_suffix)
iter_data_time = time.time()
# model.scheduler.step() # update learning rate
print("Updating learning rate...")
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
# model.save_networks('latest')
# model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, params.EPOCHS, time.time() - epoch_start_time))