-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp1.py
64 lines (43 loc) · 1.8 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import streamlit as st
import time
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_chroma import Chroma
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
load_dotenv()
st.title("RAG Application por Santiago Ramos")
loader = PyPDFLoader("yolov9_paper.pdf")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
docs = text_splitter.split_documents(data)
vectorstore = Chroma.from_documents(documents=docs, embedding=GoogleGenerativeAIEmbeddings(model="models/embedding-001"))
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 10})
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash",temperature=0,max_tokens=None,timeout=None)
query = st.chat_input("Di algo: ")
prompt = query
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following pieces of retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Use three sentences maximum and keep the "
"answer concise."
"\n\n"
"{context}"
)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
if query:
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
response = rag_chain.invoke({"input": query})
#print(response["answer"])
st.write(response["answer"])