-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_generator_torch.py
541 lines (443 loc) · 17 KB
/
image_generator_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"""
Original code from https://colab.research.google.com/drive/1go6YwMFe5MX6XM9tv-cnQiSTU50N9EeT#scrollTo=mFo5vz0UYBrF
"""
# @title Carga de bibliotecas y definiciones
import argparse
import math
from pathlib import Path
import sys
import wandb
import time
sys.path.append("./taming-transformers")
from IPython import display
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
from CLIP import clip
import kornia.augmentation as K
import numpy as np
import imageio
from PIL import ImageFile, Image
from imgtag import ImgTag # metadatos
from libxmp import * # metadatos
import libxmp # metadatos
from stegano import lsb
import json
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--no_horizontal_flip', dest='do_horizontal_flip', action='store_false')
parser.set_defaults(do_horizontal_flip=True)
parser.add_argument('--no_sharpness', dest='do_sharpness', action='store_false')
parser.set_defaults(do_sharpness=True)
parser.add_argument('--no_affine', dest='do_affine', action='store_false')
parser.set_defaults(do_affine=True)
parser.add_argument('--no_perspective', dest='do_perspective', action='store_false')
parser.set_defaults(do_perspective=True)
parser.add_argument('--no_color_jitter', dest='do_color_jitter', action='store_false')
parser.set_defaults(do_color_jitter=True)
parser.add_argument('--no_lanczos', dest='do_lanczos', action='store_false')
parser.set_defaults(do_lanczos=True)
parser.add_argument("--textos", default="a fantasy world")
parser.add_argument('--fixe_crop_size', dest='fixe_crop_size', action='store_true')
parser.set_defaults(fixe_crop_size=False)
parser.add_argument("--cutn", type=int, default=5)
args = parser.parse_args()
ImageFile.LOAD_TRUNCATED_IMAGES = True
do_augs = (
args.do_horizontal_flip
or args.do_sharpness
or args.do_affine
or args.do_perspective
or args.do_color_jitter
)
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if args.do_lanczos:
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), "reflect")
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect")
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode="bicubic", align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
(input,) = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1.0, stop=float("-inf")):
super().__init__()
self.register_buffer("embed", embed)
self.register_buffer("weight", torch.as_tensor(weight))
self.register_buffer("stop", torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
def parse_prompt(prompt):
vals = prompt.rsplit(":", 2)
vals = vals + ["", "1", "-inf"][len(vals) :]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.0):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
list_augs = []
if args.do_horizontal_flip:
list_augs.append(K.RandomHorizontalFlip(p=0.5))
if args.do_sharpness:
list_augs.append(K.RandomSharpness(0.3, p=0.4))
if args.do_affine:
list_augs.append(K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode="border"))
if args.do_perspective:
list_augs.append(K.RandomPerspective(0.2, p=0.4))
if args.do_color_jitter:
list_augs.append(K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.augs = nn.Sequential(*list_augs)
print(self.augs)
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
if args.fixe_crop_size:
max_size = min(sideX, sideY, self.cut_size)
else:
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([]) ** self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety : offsety + size, offsetx : offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
if do_augs:
batch = self.augs(torch.cat(cutouts, dim=0))
else:
batch = torch.cat(cutouts, dim=0)
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == "taming.models.vqgan.VQModel":
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer":
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
elif config.model.target == "taming.models.vqgan.GumbelVQ":
model = vqgan.GumbelVQ(**config.model.params)
print(config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
else:
raise ValueError(f"unknown model type: {config.model.target}")
del model.loss
return model
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio) ** 0.5), round((area / ratio) ** 0.5)
return image.resize(size, Image.LANCZOS)
def download_img(img_url):
try:
return wget.download(img_url, out="input.jpg")
except:
return
textos = args.textos
ancho = 480
alto = 480
modelo = "vqgan_imagenet_f16_1024"
intervalo_imagenes = 1
imagen_inicial = None
imagenes_objetivo = None
seed = 0
max_iteraciones = 2000
input_images = ""
nombres_modelos = {
"vqgan_imagenet_f16_16384": "ImageNet 16384",
"vqgan_imagenet_f16_1024": "ImageNet 1024",
"wikiart_1024": "WikiArt 1024",
"wikiart_16384": "WikiArt 16384",
"coco": "COCO-Stuff",
"faceshq": "FacesHQ",
"sflckr": "S-FLCKR",
"ade20k": "ADE20K",
"ffhq": "FFHQ",
"celebahq": "CelebA-HQ",
"gumbel_8192": "Gumbel 8192",
}
nombre_modelo = nombres_modelos[modelo]
if modelo == "gumbel_8192":
is_gumbel = True
else:
is_gumbel = False
if seed == -1:
seed = None
if imagen_inicial == "None":
imagen_inicial = None
elif imagen_inicial and imagen_inicial.lower().startswith("http"):
imagen_inicial = download_img(imagen_inicial)
if imagenes_objetivo == "None" or not imagenes_objetivo:
imagenes_objetivo = []
else:
imagenes_objetivo = imagenes_objetivo.split("|")
imagenes_objetivo = [image.strip() for image in imagenes_objetivo]
if imagen_inicial or imagenes_objetivo != []:
input_images = True
textos = [frase.strip() for frase in textos.split("|")]
if textos == [""]:
textos = []
args = argparse.Namespace(
prompts=textos,
image_prompts=imagenes_objetivo,
noise_prompt_seeds=[],
noise_prompt_weights=[],
size=[ancho, alto],
init_image=imagen_inicial,
init_weight=0.0,
clip_model="ViT-B/32",
vqgan_config=f"{modelo}.yaml",
vqgan_checkpoint=f"{modelo}.ckpt",
step_size=0.1,
cutn=args.cutn,
cut_pow=1.0,
display_freq=intervalo_imagenes,
seed=seed,
specificity="all",
do_lanczos=args.do_lanczos,
do_augs=do_augs,
do_horizontal_flip=args.do_horizontal_flip,
do_sharpness=args.do_sharpness,
do_affine=args.do_affine,
do_perspective=args.do_perspective,
do_color_jitter=args.do_color_jitter,
fixe_crop_size=args.fixe_crop_size
)
wandb.init(project="vqgan-clip", config=args, tags=["torch"])
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using device:", device)
if textos:
print("Using texts:", textos)
if imagenes_objetivo:
print("Using image prompts:", imagenes_objetivo)
if args.seed is None:
seed = torch.seed()
else:
seed = args.seed
torch.manual_seed(seed)
print("Using seed:", seed)
model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
cut_size = perceptor.visual.input_resolution
if is_gumbel:
e_dim = model.quantize.embedding_dim
else:
e_dim = model.quantize.e_dim
f = 2 ** (model.decoder.num_resolutions - 1)
make_cutouts = MakeCutouts(cut_size, args.cutn, cut_pow=args.cut_pow)
if is_gumbel:
n_toks = model.quantize.n_embed
else:
n_toks = model.quantize.n_e
toksX, toksY = args.size[0] // f, args.size[1] // f
sideX, sideY = toksX * f, toksY * f
if is_gumbel:
z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None]
else:
z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
if args.init_image:
pil_image = Image.open(args.init_image).convert("RGB")
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
z, *_ = model.encode(TF.to_tensor(pil_image).to(device).unsqueeze(0) * 2 - 1)
else:
one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
if is_gumbel:
z = one_hot @ model.quantize.embed.weight
else:
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
z_orig = z.clone()
z.requires_grad_(True)
opt = optim.Adam([z], lr=args.step_size)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
pMs = []
for prompt in args.prompts:
txt, weight, stop = parse_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for prompt in args.image_prompts:
path, weight, stop = parse_prompt(prompt)
img = resize_image(Image.open(path).convert("RGB"), (sideX, sideY))
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
embed = perceptor.encode_image(normalize(batch)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
gen = torch.Generator().manual_seed(seed)
embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
pMs.append(Prompt(embed, weight).to(device))
def synth(z):
if is_gumbel:
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim(3, 1)
else:
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
def add_xmp_data(nombrefichero):
imagen = ImgTag(filename=nombrefichero)
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC, "creator", "VQGAN+CLIP", {"prop_array_is_ordered": True, "prop_value_is_array": True}
)
if args.prompts:
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC,
"title",
" | ".join(args.prompts),
{"prop_array_is_ordered": True, "prop_value_is_array": True},
)
else:
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC, "title", "None", {"prop_array_is_ordered": True, "prop_value_is_array": True}
)
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC, "i", str(i), {"prop_array_is_ordered": True, "prop_value_is_array": True}
)
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC, "model", nombre_modelo, {"prop_array_is_ordered": True, "prop_value_is_array": True}
)
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC, "seed", str(seed), {"prop_array_is_ordered": True, "prop_value_is_array": True}
)
imagen.xmp.append_array_item(
libxmp.consts.XMP_NS_DC,
"input_images",
str(input_images),
{"prop_array_is_ordered": True, "prop_value_is_array": True},
)
# for frases in args.prompts:
# imagen.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'Prompt' ,frases, {"prop_array_is_ordered":True, "prop_value_is_array":True})
imagen.close()
def add_stegano_data(filename):
data = {
"title": " | ".join(args.prompts) if args.prompts else None,
"notebook": "VQGAN+CLIP",
"i": i,
"model": nombre_modelo,
"seed": str(seed),
"input_images": input_images,
}
lsb.hide(filename, json.dumps(data)).save(filename)
@torch.no_grad()
def checkin(i, losses, train_time, train_time_step):
losses_str = ", ".join(f"{loss.item():g}" for loss in losses)
tqdm.write(f"i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}")
out = synth(z)
image = TF.to_pil_image(out[0].cpu())
metrics = {
"loss": np.mean(np.array([loss.item() for loss in losses])),
"step": i,
"image": wandb.Image(image),
"train_time_step": train_time_step,
"train_time": train_time,
}
wandb.log(metrics)
def ascend_txt():
global i
out = synth(z)
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
result = []
if args.init_weight:
result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
for prompt in pMs:
result.append(prompt(iii))
img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:, :, :]
img = np.transpose(img, (1, 2, 0))
# filename = f"steps/{i:04}.png"
# imageio.imwrite(filename, np.array(img))
# add_stegano_data(filename)
# add_xmp_data(filename)
return result
def train(i, train_time):
train_start = time.time()
opt.zero_grad()
lossAll = ascend_txt()
loss = sum(lossAll)
loss.backward()
opt.step()
with torch.no_grad():
z.copy_(z.maximum(z_min).minimum(z_max))
train_time_step = time.time() - train_start
train_time += train_time_step
if i % args.display_freq == 0:
checkin(i, lossAll, train_time, train_time_step)
i = 0
train_time = 0
try:
with tqdm() as pbar:
while True:
train(i, train_time)
if i == max_iteraciones:
break
i += 1
pbar.update()
except KeyboardInterrupt:
pass