Skip to content

Commit eecb1fd

Browse files
Merge pull request #1097 from SebastianM-C/docs
Fix docs
2 parents f8f672a + a65fd82 commit eecb1fd

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

47 files changed

+313
-228
lines changed

.github/workflows/Documentation.yml

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ on:
44
push:
55
branches:
66
- master
7-
tags: '*'
7+
tags: "*"
88
pull_request:
99

1010
jobs:
@@ -14,9 +14,11 @@ jobs:
1414
- uses: actions/checkout@v6
1515
- uses: julia-actions/setup-julia@latest
1616
with:
17-
version: '1'
17+
version: "1"
18+
- name: Add the HolyLabRegistry
19+
run: julia --project -e 'using Pkg; Pkg.Registry.add(); Pkg.Registry.add(RegistrySpec(url = "https://github.com/HolyLab/HolyLabRegistry.git"))'
1820
- name: Install dependencies
19-
run: julia --project=docs/ -e 'using Pkg; Pkg.develop(vcat(PackageSpec(path = pwd()), [PackageSpec(path = joinpath("lib", dir)) for dir in readdir("lib") if (dir !== "OptimizationQuadDIRECT" && dir !== "OptimizationMultistartOptimization")])); Pkg.instantiate()'
21+
run: julia --project=docs/ -e 'using Pkg; Pkg.develop(vcat(PackageSpec(path = pwd()), [PackageSpec(path = joinpath("lib", dir)) for dir in readdir("lib") if (dir !== "OptimizationMultistartOptimization")])); Pkg.instantiate()'
2022
- name: Build and deploy
2123
env:
2224
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # For authentication with GitHub Actions token

docs/Project.toml

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
33
AmplNLWriter = "7c4d4715-977e-5154-bfe0-e096adeac482"
44
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
5+
DifferentiationInterface = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63"
56
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
67
FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41"
78
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
@@ -19,6 +20,7 @@ NLPModels = "a4795742-8479-5a88-8948-cc11e1c8c1a6"
1920
NLPModelsTest = "7998695d-6960-4d3a-85c4-e1bceb8cd856"
2021
NLopt = "76087f3c-5699-56af-9a33-bf431cd00edd"
2122
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
23+
OptimizationAuglag = "2ea93f80-9333-43a1-a68d-1f53b957a421"
2224
OptimizationBBO = "3e6eede4-6085-4f62-9a71-46d9bc1eb92b"
2325
OptimizationBase = "bca83a33-5cc9-4baa-983d-23429ab6bcbb"
2426
OptimizationCMAEvolutionStrategy = "bd407f91-200f-4536-9381-e4ba712f53f8"
@@ -27,18 +29,26 @@ OptimizationGCMAES = "6f0a0517-dbc2-4a7a-8a20-99ae7f27e911"
2729
OptimizationIpopt = "43fad042-7963-4b32-ab19-e2a4f9a67124"
2830
OptimizationLBFGSB = "22f7324a-a79d-40f2-bebe-3af60c77bd15"
2931
OptimizationMOI = "fd9f6733-72f4-499f-8506-86b2bdd0dea1"
32+
OptimizationMadNLP = "5d9c809f-c847-4062-9fba-1793bbfef577"
3033
OptimizationManopt = "e57b7fff-7ee7-4550-b4f0-90e9476e9fb6"
3134
OptimizationMetaheuristics = "3aafef2f-86ae-4776-b337-85a36adf0b55"
35+
OptimizationMultistartOptimization = "e4316d97-8bbb-4fd3-a7d8-3851d2a72823"
3236
OptimizationNLPModels = "064b21be-54cf-11ef-1646-cdfee32b588f"
3337
OptimizationNLopt = "4e6fcdb7-1186-4e1f-a706-475e75c168bb"
3438
OptimizationNOMAD = "2cab0595-8222-4775-b714-9828e6a9e01b"
39+
OptimizationODE = "dfa73e59-e644-4d8a-bf84-188d7ecb34e4"
3540
OptimizationOptimJL = "36348300-93cb-4f02-beb5-3c3902f8871e"
3641
OptimizationOptimisers = "42dfb2eb-d2b4-4451-abcd-913932933ac1"
3742
OptimizationPRIMA = "72f8369c-a2ea-4298-9126-56167ce9cbc2"
3843
OptimizationPolyalgorithms = "500b13db-7e66-49ce-bda4-eed966be6282"
44+
OptimizationPyCMA = "fb0822aa-1fe5-41d8-99a6-e7bf6c238d3b"
45+
OptimizationQuadDIRECT = "842ac81e-713d-465f-80f7-84eddaced298"
46+
OptimizationSciPy = "cce07bd8-c79b-4b00-aee8-8db9cce22837"
47+
OptimizationSophia = "892fee11-dca1-40d6-b698-84ba0d87399a"
3948
OptimizationSpeedMapping = "3d669222-0d7d-4eb9-8a9f-d8528b0d9b91"
4049
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
4150
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
51+
QuadDIRECT = "dae52e8d-d666-5120-a592-9e15c33b8d7a"
4252
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
4353
ReverseDiff = "37e2e3b7-166d-5795-8a7a-e32c996b4267"
4454
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
@@ -50,6 +60,7 @@ Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
5060

5161
[sources]
5262
Optimization = {path = ".."}
63+
OptimizationAuglag = {path = "../lib/OptimizationAuglag"}
5364
OptimizationBBO = {path = "../lib/OptimizationBBO"}
5465
OptimizationBase = {path = "../lib/OptimizationBase"}
5566
OptimizationCMAEvolutionStrategy = {path = "../lib/OptimizationCMAEvolutionStrategy"}
@@ -58,15 +69,22 @@ OptimizationGCMAES = {path = "../lib/OptimizationGCMAES"}
5869
OptimizationIpopt = {path = "../lib/OptimizationIpopt"}
5970
OptimizationLBFGSB = {path = "../lib/OptimizationLBFGSB"}
6071
OptimizationMOI = {path = "../lib/OptimizationMOI"}
72+
OptimizationMadNLP = {path = "../lib/OptimizationMadNLP"}
6173
OptimizationManopt = {path = "../lib/OptimizationManopt"}
6274
OptimizationMetaheuristics = {path = "../lib/OptimizationMetaheuristics"}
75+
OptimizationMultistartOptimization = {path = "../lib/OptimizationMultistartOptimization"}
6376
OptimizationNLPModels = {path = "../lib/OptimizationNLPModels"}
6477
OptimizationNLopt = {path = "../lib/OptimizationNLopt"}
6578
OptimizationNOMAD = {path = "../lib/OptimizationNOMAD"}
79+
OptimizationODE = {path = "../lib/OptimizationODE"}
6680
OptimizationOptimJL = {path = "../lib/OptimizationOptimJL"}
6781
OptimizationOptimisers = {path = "../lib/OptimizationOptimisers"}
6882
OptimizationPRIMA = {path = "../lib/OptimizationPRIMA"}
6983
OptimizationPolyalgorithms = {path = "../lib/OptimizationPolyalgorithms"}
84+
OptimizationPyCMA = {path = "../lib/OptimizationPyCMA"}
85+
OptimizationQuadDIRECT = {path = "../lib/OptimizationQuadDIRECT"}
86+
OptimizationSciPy = {path = "../lib/OptimizationSciPy"}
87+
OptimizationSophia = {path = "../lib/OptimizationSophia"}
7088
OptimizationSpeedMapping = {path = "../lib/OptimizationSpeedMapping"}
7189

7290
[compat]
@@ -89,22 +107,29 @@ NLPModels = "0.21"
89107
NLPModelsTest = "0.10"
90108
NLopt = "0.6, 1"
91109
Optimization = "5"
110+
OptimizationAuglag = "1"
92111
OptimizationBBO = "0.4"
93112
OptimizationBase = "4"
94113
OptimizationCMAEvolutionStrategy = "0.3"
95114
OptimizationEvolutionary = "0.4"
96115
OptimizationGCMAES = "0.3"
97116
OptimizationIpopt = "0.2"
98117
OptimizationMOI = "0.5"
118+
OptimizationMadNLP = "0.3"
99119
OptimizationManopt = "1"
100120
OptimizationMetaheuristics = "0.3"
121+
OptimizationMultistartOptimization = "0.3"
101122
OptimizationNLPModels = "0.0.2, 1"
102123
OptimizationNLopt = "0.3"
103124
OptimizationNOMAD = "0.3"
125+
OptimizationODE = "0.1"
104126
OptimizationOptimJL = "0.4"
105127
OptimizationOptimisers = "0.3"
106128
OptimizationPRIMA = "0.3"
107129
OptimizationPolyalgorithms = "0.3"
130+
OptimizationQuadDIRECT = "0.3"
131+
OptimizationSciPy = "0.4"
132+
OptimizationSophia = "1"
108133
OptimizationSpeedMapping = "0.2"
109134
OrdinaryDiffEq = "6"
110135
Plots = "1"

docs/make.jl

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,15 @@
11
using Documenter, Optimization
2-
using FiniteDiff, ForwardDiff, ModelingToolkit, ReverseDiff, Tracker, Zygote
3-
using ADTypes
2+
using OptimizationLBFGSB, OptimizationSophia
43

5-
cp("./docs/Manifest.toml", "./docs/src/assets/Manifest.toml", force = true)
6-
cp("./docs/Project.toml", "./docs/src/assets/Project.toml", force = true)
4+
cp(joinpath(@__DIR__, "Manifest.toml"), joinpath(@__DIR__, "src/assets/Manifest.toml"), force = true)
5+
cp(joinpath(@__DIR__, "Project.toml"), joinpath(@__DIR__, "src/assets/Project.toml"), force = true)
76

87
include("pages.jl")
98

109
makedocs(sitename = "Optimization.jl",
1110
authors = "Chris Rackauckas, Vaibhav Kumar Dixit et al.",
12-
modules = [Optimization, Optimization.SciMLBase, Optimization.OptimizationBase,
13-
FiniteDiff, ForwardDiff, ModelingToolkit, ReverseDiff, Tracker, Zygote, ADTypes],
11+
modules = [Optimization, Optimization.SciMLBase, Optimization.OptimizationBase, Optimization.ADTypes,
12+
OptimizationLBFGSB, OptimizationSophia],
1413
clean = true, doctest = false, linkcheck = true,
1514
warnonly = [:missing_docs, :cross_references],
1615
format = Documenter.HTML(assets = ["assets/favicon.ico"],

docs/src/API/ad.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -13,15 +13,15 @@ The choices for the auto-AD fill-ins with quick descriptions are:
1313

1414
## Automatic Differentiation Choice API
1515

16-
The following sections describe the Auto-AD choices in detail.
16+
The following sections describe the Auto-AD choices in detail. These types are defined in the [ADTypes.jl](https://github.com/SciML/ADTypes.jl) package.
1717

1818
```@docs
19-
OptimizationBase.AutoForwardDiff
20-
OptimizationBase.AutoFiniteDiff
21-
OptimizationBase.AutoReverseDiff
22-
OptimizationBase.AutoZygote
23-
OptimizationBase.AutoTracker
24-
OptimizationBase.AutoSymbolics
25-
OptimizationBase.AutoEnzyme
19+
ADTypes.AutoForwardDiff
20+
ADTypes.AutoFiniteDiff
21+
ADTypes.AutoReverseDiff
22+
ADTypes.AutoZygote
23+
ADTypes.AutoTracker
24+
ADTypes.AutoSymbolics
25+
ADTypes.AutoEnzyme
2626
ADTypes.AutoMooncake
2727
```

docs/src/API/optimization_state.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
# [OptimizationState](@id optstate)
22

33
```@docs
4-
Optimization.OptimizationState
4+
OptimizationBase.OptimizationState
55
```

docs/src/examples/rosenbrock.md

Lines changed: 23 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -41,15 +41,16 @@ An optimization problem can now be defined and solved to estimate the values for
4141

4242
```@example rosenbrock
4343
# Define the problem to solve
44-
using Optimization, ForwardDiff, Zygote
44+
using SciMLBase, OptimizationBase
45+
using ADTypes, ForwardDiff, Zygote
4546
4647
rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
4748
x0 = zeros(2)
4849
_p = [1.0, 100.0]
4950
50-
f = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
51+
f = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoForwardDiff())
5152
l1 = rosenbrock(x0, _p)
52-
prob = OptimizationProblem(f, x0, _p)
53+
prob = SciMLBase.OptimizationProblem(f, x0, _p)
5354
```
5455

5556
## Optim.jl Solvers
@@ -59,19 +60,19 @@ prob = OptimizationProblem(f, x0, _p)
5960
```@example rosenbrock
6061
using OptimizationOptimJL
6162
sol = solve(prob, SimulatedAnnealing())
62-
prob = OptimizationProblem(f, x0, _p, lb = [-1.0, -1.0], ub = [0.8, 0.8])
63+
prob = SciMLBase.OptimizationProblem(f, x0, _p, lb = [-1.0, -1.0], ub = [0.8, 0.8])
6364
sol = solve(prob, SAMIN())
6465
6566
l1 = rosenbrock(x0, _p)
66-
prob = OptimizationProblem(rosenbrock, x0, _p)
67+
prob = SciMLBase.OptimizationProblem(rosenbrock, x0, _p)
6768
sol = solve(prob, NelderMead())
6869
```
6970

7071
### Now a gradient-based optimizer with forward-mode automatic differentiation
7172

7273
```@example rosenbrock
73-
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
74-
prob = OptimizationProblem(optf, x0, _p)
74+
optf = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoForwardDiff())
75+
prob = SciMLBase.OptimizationProblem(optf, x0, _p)
7576
sol = solve(prob, BFGS())
7677
```
7778

@@ -91,19 +92,19 @@ sol = solve(prob, Optim.KrylovTrustRegion())
9192

9293
```@example rosenbrock
9394
cons = (res, x, p) -> res .= [x[1]^2 + x[2]^2]
94-
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff(); cons = cons)
95+
optf = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoForwardDiff(); cons = cons)
9596
96-
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [Inf])
97+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [Inf])
9798
sol = solve(prob, IPNewton()) # Note that -Inf < x[1]^2 + x[2]^2 < Inf is always true
9899
99-
prob = OptimizationProblem(optf, x0, _p, lcons = [-5.0], ucons = [10.0])
100+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lcons = [-5.0], ucons = [10.0])
100101
sol = solve(prob, IPNewton()) # Again, -5.0 < x[1]^2 + x[2]^2 < 10.0
101102
102-
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [Inf],
103+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [Inf],
103104
lb = [-500.0, -500.0], ub = [50.0, 50.0])
104105
sol = solve(prob, IPNewton())
105106
106-
prob = OptimizationProblem(optf, x0, _p, lcons = [0.5], ucons = [0.5],
107+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lcons = [0.5], ucons = [0.5],
107108
lb = [-500.0, -500.0], ub = [50.0, 50.0])
108109
sol = solve(prob, IPNewton())
109110
@@ -118,8 +119,8 @@ function con_c(res, x, p)
118119
res .= [x[1]^2 + x[2]^2]
119120
end
120121
121-
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff(); cons = con_c)
122-
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [0.25^2])
122+
optf = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoForwardDiff(); cons = con_c)
123+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lcons = [-Inf], ucons = [0.25^2])
123124
sol = solve(prob, IPNewton()) # -Inf < cons_circ(sol.u, _p) = 0.25^2
124125
```
125126

@@ -139,17 +140,17 @@ function con2_c(res, x, p)
139140
res .= [x[1]^2 + x[2]^2, x[2] * sin(x[1]) - x[1]]
140141
end
141142
142-
optf = OptimizationFunction(rosenbrock, Optimization.AutoZygote(); cons = con2_c)
143-
prob = OptimizationProblem(optf, x0, _p, lcons = [-Inf, -Inf], ucons = [100.0, 100.0])
143+
optf = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoZygote(); cons = con2_c)
144+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lcons = [-Inf, -Inf], ucons = [100.0, 100.0])
144145
sol = solve(prob, Ipopt.Optimizer())
145146
```
146147

147148
## Now let's switch over to OptimizationOptimisers with reverse-mode AD
148149

149150
```@example rosenbrock
150151
import OptimizationOptimisers
151-
optf = OptimizationFunction(rosenbrock, Optimization.AutoZygote())
152-
prob = OptimizationProblem(optf, x0, _p)
152+
optf = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoZygote())
153+
prob = SciMLBase.OptimizationProblem(optf, x0, _p)
153154
sol = solve(prob, OptimizationOptimisers.Adam(0.05), maxiters = 1000, progress = false)
154155
```
155156

@@ -164,8 +165,8 @@ sol = solve(prob, CMAEvolutionStrategyOpt())
164165

165166
```@example rosenbrock
166167
using OptimizationNLopt, ModelingToolkit
167-
optf = OptimizationFunction(rosenbrock, Optimization.AutoSymbolics())
168-
prob = OptimizationProblem(optf, x0, _p)
168+
optf = SciMLBase.OptimizationFunction(rosenbrock, ADTypes.AutoSymbolics())
169+
prob = SciMLBase.OptimizationProblem(optf, x0, _p)
169170
170171
sol = solve(prob, Opt(:LN_BOBYQA, 2))
171172
sol = solve(prob, Opt(:LD_LBFGS, 2))
@@ -174,7 +175,7 @@ sol = solve(prob, Opt(:LD_LBFGS, 2))
174175
### Add some box constraints and solve with a few NLopt.jl methods
175176

176177
```@example rosenbrock
177-
prob = OptimizationProblem(optf, x0, _p, lb = [-1.0, -1.0], ub = [0.8, 0.8])
178+
prob = SciMLBase.OptimizationProblem(optf, x0, _p, lb = [-1.0, -1.0], ub = [0.8, 0.8])
178179
sol = solve(prob, Opt(:LD_LBFGS, 2))
179180
sol = solve(prob, Opt(:G_MLSL_LDS, 2), local_method = Opt(:LD_LBFGS, 2), maxiters = 10000) #a global optimizer with random starts of local optimization
180181
```
@@ -183,7 +184,7 @@ sol = solve(prob, Opt(:G_MLSL_LDS, 2), local_method = Opt(:LD_LBFGS, 2), maxiter
183184

184185
```@example rosenbrock
185186
using OptimizationBBO
186-
prob = Optimization.OptimizationProblem(rosenbrock, [0.0, 0.3], _p, lb = [-1.0, 0.2],
187+
prob = SciMLBase.OptimizationProblem(rosenbrock, [0.0, 0.3], _p, lb = [-1.0, 0.2],
187188
ub = [0.8, 0.43])
188189
sol = solve(prob, BBO_adaptive_de_rand_1_bin()) # -1.0 ≤ x[1] ≤ 0.8, 0.2 ≤ x[2] ≤ 0.43
189190
```

docs/src/getting_started.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,15 +14,15 @@ The simplest copy-pasteable code using a quasi-Newton method (LBFGS) to solve th
1414

1515
```@example intro
1616
# Import the package and define the problem to optimize
17-
using Optimization, OptimizationLBFGSB, Zygote
17+
using OptimizationBase, OptimizationLBFGSB, ADTypes, Zygote
1818
rosenbrock(u, p) = (p[1] - u[1])^2 + p[2] * (u[2] - u[1]^2)^2
1919
u0 = zeros(2)
2020
p = [1.0, 100.0]
2121
22-
optf = OptimizationFunction(rosenbrock, AutoZygote())
22+
optf = OptimizationFunction(rosenbrock, ADTypes.AutoZygote())
2323
prob = OptimizationProblem(optf, u0, p)
2424
25-
sol = solve(prob, OptimizationLBFGSB.LBFGS())
25+
sol = solve(prob, OptimizationLBFGSB.LBFGSB())
2626
```
2727

2828
```@example intro
@@ -131,8 +131,8 @@ automatically construct the derivative functions using ForwardDiff.jl. This
131131
looks like:
132132

133133
```@example intro
134-
using ForwardDiff
135-
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
134+
using ForwardDiff, ADTypes
135+
optf = OptimizationFunction(rosenbrock, ADTypes.AutoForwardDiff())
136136
prob = OptimizationProblem(optf, u0, p)
137137
sol = solve(prob, OptimizationOptimJL.BFGS())
138138
```
@@ -155,7 +155,7 @@ We can demonstrate this via:
155155

156156
```@example intro
157157
using Zygote
158-
optf = OptimizationFunction(rosenbrock, Optimization.AutoZygote())
158+
optf = OptimizationFunction(rosenbrock, ADTypes.AutoZygote())
159159
prob = OptimizationProblem(optf, u0, p)
160160
sol = solve(prob, OptimizationOptimJL.BFGS())
161161
```

docs/src/optimization_packages/blackboxoptim.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
6363
x0 = zeros(2)
6464
p = [1.0, 100.0]
6565
f = OptimizationFunction(rosenbrock)
66-
prob = Optimization.OptimizationProblem(f, x0, p, lb = [-1.0, -1.0], ub = [1.0, 1.0])
66+
prob = SciMLBase.OptimizationProblem(f, x0, p, lb = [-1.0, -1.0], ub = [1.0, 1.0])
6767
sol = solve(prob, BBO_adaptive_de_rand_1_bin_radiuslimited(), maxiters = 100000,
6868
maxtime = 1000.0)
6969
```

docs/src/optimization_packages/cmaevolutionstrategy.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,6 @@ rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
3030
x0 = zeros(2)
3131
p = [1.0, 100.0]
3232
f = OptimizationFunction(rosenbrock)
33-
prob = Optimization.OptimizationProblem(f, x0, p, lb = [-1.0, -1.0], ub = [1.0, 1.0])
33+
prob = SciMLBase.OptimizationProblem(f, x0, p, lb = [-1.0, -1.0], ub = [1.0, 1.0])
3434
sol = solve(prob, CMAEvolutionStrategyOpt())
3535
```

docs/src/optimization_packages/evolutionary.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,6 @@ rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
3838
x0 = zeros(2)
3939
p = [1.0, 100.0]
4040
f = OptimizationFunction(rosenbrock)
41-
prob = Optimization.OptimizationProblem(f, x0, p, lb = [-1.0, -1.0], ub = [1.0, 1.0])
41+
prob = SciMLBase.OptimizationProblem(f, x0, p, lb = [-1.0, -1.0], ub = [1.0, 1.0])
4242
sol = solve(prob, Evolutionary.CMAES(μ = 40, λ = 100))
4343
```

0 commit comments

Comments
 (0)