-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
66 lines (55 loc) · 1.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
def is_gpu_available():
return torch.cuda.is_available()
# from https://github.com/rafaljozefowicz/lm
class HParams(object):
def __init__(self, **kwargs):
self._items = {}
for k, v in kwargs.items():
self._set(k, v)
def _set(self, k, v):
self._items[k] = v
setattr(self, k, v)
def parse(self, str_value):
hps = HParams(**self._items)
for entry in str_value.strip().split(","):
entry = entry.strip()
if not entry:
continue
key, sep, value = entry.partition("=")
if not sep:
raise ValueError("Unable to parse: %s" % entry)
default_value = hps._items[key]
if isinstance(default_value, bool):
hps._set(key, value.lower() == "true")
elif isinstance(default_value, int):
hps._set(key, int(value))
elif isinstance(default_value, float):
hps._set(key, float(value))
else:
hps._set(key, value)
return hps
def update(self, **kwargs):
for k, v in kwargs.items():
self._set(k, v)
def show(self):
print("\n----------- Current Hyperparameter Settings -----------")
for k, v in self._items.items():
print( u'{} : {}'.format(k,v) )
print("-------------------------------------------------------\n")
def get_all_param(self):
all_param = {}
for k, v in self._items.items():
all_param[k] = v
return all_param
import os
def prepare_dir(dir_name):
if not os.path.exists(dir_name): os.makedirs(dir_name)
def load_model(model_fn, map_location=None):
if map_location:
return torch.load(model_fn, map_location=map_location)
else:
if torch.cuda.is_available():
return torch.load(model_fn)
else:
return torch.load(model_fn, map_location='cpu')