Skip to content

Latest commit

 

History

History
executable file
·
162 lines (152 loc) · 3.96 KB

102. Binary Tree Level Order Traversal.md

File metadata and controls

executable file
·
162 lines (152 loc) · 3.96 KB

102. Binary Tree Level Order Traversal

Question:

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example:
Given binary tree [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

Thinking:

  • Method:
    • 很明显的bfs,唯一需要注意的就是如何确定level
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> result = new ArrayList<>();
        if(root == null) return result;
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while(queue.size() != 0){
            int count = queue.size();
            List<Integer> list = new LinkedList<>();
            for(int i = 0; i < count; i++){
                TreeNode node = queue.poll();
                if(node.left != null) queue.add(node.left);
                if(node.right != null) queue.add(node.right);
                list.add(node.val);
            }
            result.add(list);
        }
        return result;
    }
}

二刷

这道题还是比较简单,使用bfs解就好了。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> result = new LinkedList<>();
        if(root == null) return result;
        LinkedList<TreeNode> q = new LinkedList<>();
        q.offer(root);
        while(!q.isEmpty()){
            int size = q.size();
            List<Integer> res = new LinkedList<>();
            TreeNode node = null;
            for(int i = 0; i < size; i++){
                node = q.poll();
                res.add(node.val);
                if(node.left != null) q.offer(node.left);
                if(node.right != null) q.offer(node.right);
            }
            result.add(res);
        }
        return result;
    }
}

Third Time

  • Method 1: bfs
    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    class Solution {
        public List<List<Integer>> levelOrder(TreeNode root) {
            List<List<Integer>> result = new ArrayList<>();
            if(root == null) return result;
            Queue<TreeNode> q = new LinkedList<>();
            q.offer(root);
            while(!q.isEmpty()){
                List<Integer> temp = new ArrayList<>();
                int size = q.size();
                for(int i = 0; i < size; i++){
                    TreeNode node = q.poll();
                    temp.add(node.val);
                    if(node.left != null) q.offer(node.left);
                    if(node.right != null) q.offer(node.right);
                }
                result.add(temp);
            }
            return result;
        }
    }

Fourth Time

  • Method 1: BFS
     /**
      * Definition for a binary tree node.
      * public class TreeNode {
      *     int val;
      *     TreeNode left;
      *     TreeNode right;
      *     TreeNode(int x) { val = x; }
      * }
      */
     class Solution {
     	public List<List<Integer>> levelOrder(TreeNode root) {
     		List<List<Integer>> result = new ArrayList<>();
     		if(root == null) return result;
     		Queue<TreeNode> q = new LinkedList<>();
     		q.offer(root);
     		while(!q.isEmpty()){
     			List<Integer> temp = new ArrayList<>();
     			int size = q.size();
     			for(int i = 0; i < size; i++){
     				TreeNode node = q.poll();
     				temp.add(node.val);
     				if(node.left != null) q.offer(node.left);
     				if(node.right != null) q.offer(node.right);
     			}
     			result.add(temp);
     		}
     		return result;
     	}
     }