-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.go
230 lines (212 loc) · 5.53 KB
/
misc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Various basic functions for slice and integer manipulation.
package main
import (
"sort"
)
// Insert the element e into the slice s at index i.
//
// The preceeding elements are unmodified and the remainder are all shifted
// by one place.
func Insert[T any](s *[]T, e T, i int) {
if i == len(*s) {
*s = append(*s, e)
} else {
*s = append(
(*s)[:i+1],
(*s)[i:]...,
)
(*s)[i] = e
}
}
// Insert e into the slice s in an appopriate position to preserve its ordering.
//
// If the elements in s are sorted in ascending order of the value that the
// function orderVal() takes on them, e will be inserted so as to preserve this
// property.
func OrderedInsert[T any, n Ordered](s *[]T, e T, f func(T) n) {
fOfE := f(e)
index := sort.Search(
len(*s),
func(i int) bool { return f((*s)[i]) >= fOfE },
)
Insert(s, e, index)
}
// Merge two sorted slices into a single sorted slice.
//
// Returns a new merged slice without modifying a or b.
//
// Sorting is done according to comp(), which should return true iff its first
// argument should occur before its second (eg for sorting in ascending order,
// it should implement 'comp(x,y) = x < y' or 'comp(x,y) = x <= y'; the former
// will put elements from a first in the event of a tie, and the latter will
// put elements from b first).
func MergeSlices[T any](a []T, b []T, comp func(x, y T) bool) []T {
i, j := 0, 0
c := make([]T, 0, len(a)+len(b))
for (i < len(a)) && (j < len(b)) {
if comp(b[j], a[i]) {
c = append(c, b[j])
j++
} else {
c = append(c, a[i])
i++
}
}
if i < len(a) {
c = append(c, a[i:]...)
} else if j < len(b) {
c = append(c, b[j:]...)
}
return c
}
// Remove the element at index i from the slice s.
//
// The elements at indices less than i will not be modified, but the ordering
// of the remaining elements is NOT preserved.
func UnorderedDelete[T any](s *[]T, i int) {
(*s)[i] = (*s)[len(*s)-1]
*s = (*s)[:len(*s)-1]
}
// Remove from s all elements at indices i for which deleteAt[i] is true,
// preserving the ordering of the remaining elements.
//
// Panics if len(deleteAt) < len(s)
func OrderedDelete[T any](s *[]T, deleteAt []bool) {
nxtIndex := 0
for i := 0; i < len(*s); i++ {
if !deleteAt[i] {
if nxtIndex != i {
(*s)[nxtIndex] = (*s)[i]
}
nxtIndex++
}
}
*s = (*s)[:nxtIndex]
}
// Perform a binary search on a sorted slice.
//
// For an element e in the slice, the value by which the slice is sorted
// (ascending) should be returned by f(e). The search is for elements
// with f(e) == v .
//
// Returns 3 values:
// bool whether any instance of the specified value was found at all
// int index in s of the first element for which f() returns v
// int index in s of the first element for which f() returns a value
// larger than v (or, if there is no such entry, entrySlice's length)
// If the first return value is false, the second return value is meaningless
// (but the third retains its usual meaning).
func IndexRangeOf[T any, n Ordered](s []T, v n, f func(T) n) (bool, int, int) {
firstGrtrEqlIndex := sort.Search(
len(s),
func(i int) bool { return f(s[i]) >= v },
)
if (firstGrtrEqlIndex == len(s)) || (f(s[firstGrtrEqlIndex]) != v) {
return false, firstGrtrEqlIndex, firstGrtrEqlIndex
}
remainingSlice := s[firstGrtrEqlIndex:]
numMatches := sort.Search(
len(remainingSlice),
func(i int) bool { return f(remainingSlice[i]) > v },
)
return true, firstGrtrEqlIndex, firstGrtrEqlIndex + numMatches
}
// Return true iff the function test(i) returns true for all i in [0, end).
//
// Always returns true for end == 0. Short circuits at the smallest i for which
// test(i) returns false.
func AllTrue(end int, test func(i int) bool) bool {
for i := 0; i < end; i++ {
if !test(i) {
return false
}
}
return true
}
// Return the minimum value of f(i) for integer i in [0, end).
// If f(i) is never less than defaultVal or if end == 0, return defaultVal.
func FuncMin(end int, f func(i int) uint64, defaultVal uint64) uint64 {
min := defaultVal
for i := 0; i < end; i++ {
funcVal := f(i)
if funcVal < min {
min = funcVal
}
}
return min
}
// Return the smallest argument
func Min(val uint64, vals ...uint64) uint64 {
for _, v := range vals {
if v < val {
val = v
}
}
return val
}
// Return the largest argument
func Max(val uint64, vals ...uint64) uint64 {
for _, v := range vals {
if v > val {
val = v
}
}
return val
}
// Return a - b if it is non-negative, zero otherwise.
func PositiveDiff(a, b uint64) uint64 {
if a <= b {
return 0
} else {
return a - b
}
}
// Return the absolute value of the difference between x and y
func AbsDiff(x, y uint64) uint64 {
if x > y {
return x - y
} else {
return y - x
}
}
// Return (x-y)%b, accounting for overflow/underflow.
func ModuloDiff(x, y, b uint64) uint64 {
if y > x {
z := (y - x) % b
if z == 0 {
return 0
} else {
return b - z
}
} else {
return (x - y) % b
}
}
// Return the absolute value of n.
func Abs(n int) int {
if n >= 0 {
return n
} else {
return -n
}
}
// Round n up to the next power of two.
//
// Assumes n is a positive integer (n=0 yields 0 and the behaviour of negative
// numbers potentially depends on the instruction set).
func NextPow2(n int64) int64 {
// Algorithm from https://graphics.stanford.edu/~seander/bithacks.html
n--
n |= n >> 1
n |= n >> 2
n |= n >> 4
n |= n >> 8
n |= n >> 16
n |= n >> 32
n++
return n
}
// Type constraint for a number of types which implement ==, !=, >, <, >= and <=.
type Ordered interface {
~int | ~uint | ~int64 | ~uint64 | ~uint8 | ~float32 | ~float64
}