Skip to content

Commit

Permalink
add keda example
Browse files Browse the repository at this point in the history
  • Loading branch information
anggao committed Oct 14, 2020
1 parent ea785d1 commit 5cfe690
Show file tree
Hide file tree
Showing 3 changed files with 382 additions and 1 deletion.
344 changes: 344 additions & 0 deletions examples/keda/keda_prom_auto_scale.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,344 @@
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"source": [
"\n",
"# Scale Seldon Deployments based on Prometheus Metrics.\n",
"This notebook shows how you can scale Seldon Deployments based on Prometheus metrics via KEDA. \n",
"\n",
"[KEDA](https://keda.sh/) is a Kubernetes-based Event Driven Autoscaler. With KEDA, you can drive the scaling of any container in Kubernetes based on the number of events needing to be processed. \n",
"\n",
"With the support of KEDA in Seldon, you can scale your seldon deployments with any scalers listed [here](https://keda.sh/docs/2.0/scalers/).\n",
"In this example we will scale the seldon deployment with Prometheus metrics as an example."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"## Install Seldon Core\n",
"\n",
"Follow the [Seldon Core Install documentation](https://docs.seldon.io/projects/seldon-core/en/latest/workflow/install.html)."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl create namespace seldon-system"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!helm install seldon-core seldon-core-operator --repo https://storage.googleapis.com/seldon-charts --namespace seldon-system"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl get pod -n seldon-system"
]
},
{
"source": [
"## Install Seldon Core Analytics"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"seldon-core-analytics contains Prometheus and Grafana installation with a basic Grafana dashboard showing the default Prometheus metrics exposed by Seldon for each inference graph deployed. \n",
"Later we will use the Prometheus service installed to provide metrics in order to scale the Seldon models."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!helm install seldon-core-analytics seldon-core-analytics --repo https://storage.googleapis.com/seldon-charts --namespace seldon-system"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl get pod -n seldon-system"
]
},
{
"source": [
"## Install KEDA"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"!kubectl apply -f https://github.com/kedacore/keda/releases/download/v2.0.0-beta/keda-2.0.0-beta.yaml"
],
"cell_type": "code",
"metadata": {
"tags": []
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl get pod -n keda"
]
},
{
"source": [
"## Create model with KEDA"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"To create a model with KEDA autoscaling you just need to add a KEDA spec refering in the Deployment, e.g.:\n",
"```yaml\n",
"kedaSpec:\n",
" pollingInterval: 15 # Optional. Default: 30 seconds\n",
" minReplicaCount: 1 # Optional. Default: 0\n",
" maxReplicaCount: 5 # Optional. Default: 100\n",
" triggers:\n",
" - type: prometheus\n",
" metadata:\n",
" # Required\n",
" serverAddress: http://seldon-core-analytics-prometheus-seldon.seldon-system.svc.cluster.local\n",
" metricName: access_frequency\n",
" threshold: '10'\n",
" query: rate(seldon_api_executor_client_requests_seconds_count{seldon_app=~\"seldon-model-example\"}[10s]\n",
"```\n",
"The full SeldonDeployment spec is shown below."
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pygmentize model_with_keda_prom.yaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl create -f model_with_keda_prom.yaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl rollout status deploy/$(kubectl get deploy -l seldon-deployment-id=seldon-model -o jsonpath='{.items[0].metadata.name}')"
]
},
{
"source": [
"## Create Load"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"We label some nodes for the loadtester. We attempt the first two as for Kind the first node shown will be the master."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"!kubectl label nodes $(kubectl get nodes -o jsonpath='{.items[0].metadata.name}') role=locust\n",
"!kubectl label nodes $(kubectl get nodes -o jsonpath='{.items[1].metadata.name}') role=locust"
],
"cell_type": "code",
"metadata": {
"tags": []
},
"execution_count": null,
"outputs": []
},
{
"source": [
"Before add loads to the model, there is only one replica"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl get deployment seldon-model-example-0-classifier"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!helm install seldon-core-loadtesting seldon-core-loadtesting --repo https://storage.googleapis.com/seldon-charts \\\n",
" --set locust.host=http://seldon-model-example:8000 \\\n",
" --set oauth.enabled=false \\\n",
" --set locust.hatchRate=1 \\\n",
" --set locust.clients=1 \\\n",
" --set loadtest.sendFeedback=0 \\\n",
" --set locust.minWait=0 \\\n",
" --set locust.maxWait=0 \\\n",
" --set replicaCount=1"
]
},
{
"source": [
"After a few mins you should see the deployment scaled to 5 replicas"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl get deployment/seldon-model-example-0-classifier scaledobject/seldon-model-example-0-classifier"
]
},
{
"source": [
"## Remove Load"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!helm delete seldon-core-loadtesting"
]
},
{
"source": [
"After 5-10 mins you should see the deployment replica number decrease to 1"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl get pods,deployments,hpa,scaledobject"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!kubectl delete -f model_with_keda_prom.yaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}
37 changes: 37 additions & 0 deletions examples/keda/model_with_keda_prom.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
name: seldon-model
spec:
name: test-deployment
predictors:
- componentSpecs:
- spec:
containers:
- image: seldonio/mock_classifier_rest:1.3
imagePullPolicy: IfNotPresent
name: classifier
resources:
requests:
cpu: '0.5'
kedaSpec:
pollingInterval: 15 # Optional. Default: 30 seconds
minReplicaCount: 1 # Optional. Default: 0
maxReplicaCount: 5 # Optional. Default: 100
triggers:
- type: prometheus
metadata:
# Required
serverAddress: http://seldon-core-analytics-prometheus-seldon.seldon-system.svc.cluster.local
metricName: access_frequency
threshold: '10'
query: rate(seldon_api_executor_client_requests_seconds_count{seldon_app=~"seldon-model-example"}[10s])
terminationGracePeriodSeconds: 1
graph:
children: []
endpoint:
type: REST
name: classifier
type: MODEL
name: example
2 changes: 1 addition & 1 deletion operator/Dockerfile.redhat
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Build the manager binary
FROM golang:1.13.2 as builder
FROM golang:1.14.9 as builder

WORKDIR /workspace
# Copy the Go Modules manifests
Expand Down

0 comments on commit 5cfe690

Please sign in to comment.