|
| 1 | +"""Contains methods to generate a JSON file for Seldon API integration testing.""" |
| 2 | + |
| 3 | +import os |
| 4 | +import random |
| 5 | +from typing import List, Optional, Union |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import pandas as pd |
| 9 | + |
| 10 | +RANGE_INTEGER_MIN = 0 |
| 11 | +RANGE_INTEGER_MAX = 1 |
| 12 | +RANGE_FLOAT_MIN = 0.0 |
| 13 | +RANGE_FLOAT_MAX = 1.0 |
| 14 | + |
| 15 | + |
| 16 | +def _column_range(col: pd.Series) -> Optional[List]: |
| 17 | + """ |
| 18 | + Calculate minimum and maximum of a column and outputs a list. |
| 19 | +
|
| 20 | + :param col: Column to inspect. |
| 21 | + :return: Min and max of the column range as a list. |
| 22 | + """ |
| 23 | + if col.dtype == np.float: |
| 24 | + if pd.isnull(min(col)): # This also means that maximum is null |
| 25 | + return [RANGE_FLOAT_MIN, RANGE_FLOAT_MAX] |
| 26 | + else: |
| 27 | + return [min(col), max(col)] |
| 28 | + elif col.dtype == np.integer: |
| 29 | + if pd.isnull(min(col)): # This also means that maximum is null |
| 30 | + return [RANGE_INTEGER_MIN, RANGE_INTEGER_MAX] |
| 31 | + else: |
| 32 | + return [min(col), max(col)] |
| 33 | + else: |
| 34 | + return np.NaN |
| 35 | + |
| 36 | + |
| 37 | +def _column_values(column: pd.Series) -> Union[List, float]: |
| 38 | + """ |
| 39 | + Randomly sample from a column. The number of items is num_repeats or the number of unique values whichever is lower. |
| 40 | +
|
| 41 | + :param column: Column to inspect. |
| 42 | + :return: |
| 43 | + """ |
| 44 | + if column.dtype != np.number: |
| 45 | + num_sample = len(column.unique()) |
| 46 | + random.seed(8888) |
| 47 | + return random.sample(column.unique().tolist(), num_sample) |
| 48 | + else: |
| 49 | + return np.NaN |
| 50 | + |
| 51 | + |
| 52 | +def create_seldon_api_testing_file(data: pd.DataFrame, target: str, output_path: str) -> bool: |
| 53 | + """ |
| 54 | + Create a JSON file for Seldon API testing. |
| 55 | +
|
| 56 | + :param data: Pandas DataFrame used as a recipe for the json file. |
| 57 | + :param target: Name of the target column. |
| 58 | + :param output_path: Path of output file. |
| 59 | + :return: True if file correctly generated. |
| 60 | + """ |
| 61 | + |
| 62 | + # create a Data frame in the form of JSON object |
| 63 | + df_for_json = pd.DataFrame(data=data.columns.values, columns=["name"]) |
| 64 | + df_for_json["dtype"] = np.where(data.dtypes == np.float, 'FLOAT', |
| 65 | + np.where(data.dtypes == np.int, 'INTEGER', np.NaN)) |
| 66 | + df_for_json["ftype"] = np.where(data.dtypes == np.number, 'continuous', 'categorical') |
| 67 | + ranges = [_column_range(data[column_name]) for column_name in data.columns.values] |
| 68 | + values = [_column_values(data[column_name]) for column_name in data.columns.values] |
| 69 | + df_for_json["range"] = ranges |
| 70 | + df_for_json["values"] = values |
| 71 | + # Split the target |
| 72 | + df_for_json_target = df_for_json[df_for_json.name == target] |
| 73 | + df_for_json_features = df_for_json[df_for_json.name != target] |
| 74 | + |
| 75 | + # Convert data frames to JSON with a trick that removes records with NaNs |
| 76 | + json_features_df = df_for_json_features.T.apply(lambda row: row[~row.isnull()].to_json()) |
| 77 | + json_features = f'[{",".join(json_features_df)}]' |
| 78 | + json_target_df = df_for_json_target.T.apply(lambda row: row[~row.isnull()].to_json()) |
| 79 | + json_target = f'[{",".join(json_target_df)}]' |
| 80 | + json_combined = f'{{"features": {json_features}, "targets": {json_target}}}' |
| 81 | + |
| 82 | + with open(output_path, 'w+') as output_file: |
| 83 | + output_file.write(str(json_combined)) |
| 84 | + return os.path.exists(output_path) |
| 85 | + |
0 commit comments