-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbuild_test_models.py
64 lines (58 loc) · 2.53 KB
/
build_test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
from tensorflow.keras.layers import Dense, SimpleRNN, GRU, BatchNormalization, InputLayer, Activation
from tensorflow.keras.models import Sequential
from tensorflow.keras.backend import clear_session
WRITE_KERAS_MODELS = False
def create_model(model_type):
clear_session()
samples = 2000
epochs = 20
if model_type == 'Dense':
x_train = np.random.uniform(0, 10, (samples, 5))
y_train = (np.mean(x_train, axis=1) ** 2) / 2 # half of squared mean of sample
model = Sequential()
model.add(InputLayer(input_shape=x_train.shape[1:]))
model.add(Dense(128))
model.add(Activation(activation='relu'))
model.add(BatchNormalization())
model.add(Dense(64))
model.add(Activation(activation='tanh'))
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(16, activation='tanh'))
model.add(BatchNormalization())
model.add(Dense(1, activation='linear'))
elif model_type == 'SimpleRNN':
x_train = np.random.uniform(0, 10, (samples, 10, 4))
y_train = (np.mean(x_train.take(axis=1, indices=8), axis=1) ** 2) / 2 # half of squared mean of sample's 8th index
model = Sequential()
model.add(SimpleRNN(128, return_sequences=True, input_shape=x_train.shape[1:]))
model.add(BatchNormalization())
model.add(SimpleRNN(64, return_sequences=True))
model.add(BatchNormalization())
model.add(SimpleRNN(32))
model.add(BatchNormalization())
model.add(Dense(16, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1, activation='linear'))
elif model_type == 'GRU':
x_train = np.random.uniform(0, 10, (samples, 10, 4))
y_train = (np.mean(x_train.take(axis=1, indices=8), axis=1) ** 2) / 2 # half of squared mean of sample's 8th index
model = Sequential()
model.add(GRU(128, input_shape=x_train.shape[1:], return_sequences=True, implementation=2))
model.add(BatchNormalization())
model.add(GRU(64, return_sequences=True, implementation=2))
model.add(BatchNormalization())
model.add(GRU(32, implementation=2))
model.add(BatchNormalization())
model.add(Dense(16, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1, activation='linear'))
else:
raise Exception('Unknown model type: {}'.format(model_type))
model.compile(optimizer='adam', loss='mse')
model.fit(x_train, y_train, batch_size=32, epochs=epochs, verbose=0)
if WRITE_KERAS_MODELS:
model.save('tests/{}.h5'.format(model_type))
return model, x_train.shape