-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
251 lines (217 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import os
import torch
from torch import nn
from torch.optim import SGD
from torch.utils.data import Dataset, DataLoader,random_split
from model import SUNnet
import cv2
import logging
import datetime
import sys
DATA_SET='HTCD'
data_dir = '%path_to_dataset%/tiles'
MODEL='SUNet'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
EPOCHES=300
# 01-07是chisinau-FC_EF的模型 # 加edge修改
# resume_model='logger/' + DATA_SET + '_' + MODEL + '_01-07'+ '/weights/model_para_52.pth'
resume_model=None
class HTCD(Dataset):
# img1-sat img2-uav
def __init__(self, dir_chin_data):
# ls_pick_images:选中的大图号(int)的list,方便划分数据集之用
self.dir = dir_chin_data
self.images = os.listdir(os.path.join(self.dir,'uav'))
self.sat_mean = np.array([66, 71, 74], np.uint8)
self.uav_mean = np.array([73, 81, 79], np.uint8)
def __getitem__(self, idx):
# img1-sat img2-uav
filename = self.images[idx]
img1_file = os.path.join(self.dir, 'sat', filename)
edge1_file = os.path.join(self.dir, 'edges_uav', filename + '.jpg')
img2_file = os.path.join(self.dir, 'uav', filename)
edge2_file=os.path.join(self.dir, 'edges_sat', filename + '.jpg')
lbl_file = os.path.join(self.dir, 'label', filename)
img1 = cv2.imread(img1_file).astype(np.int)
img1 -= self.sat_mean
if (img1 is None):
print(idx)
print(img1_file)
img_size = img1.shape[:2]
edge1=cv2.imread(edge1_file, cv2.IMREAD_UNCHANGED)
edge1 = cv2.resize(edge1, img_size).astype(np.int)
img1=np.concatenate((img1, edge1[..., np.newaxis]), axis=2)
img1 = img1.transpose((2, 0, 1)).astype(np.float32) / 128
img2 = cv2.imread(img2_file)
img2 = cv2.resize(img2, (2048,2048)).astype(np.int)
img2 -= self.uav_mean
edge2=cv2.imread(edge2_file, cv2.IMREAD_UNCHANGED)
edge2 = cv2.resize(edge2, (2048,2048)).astype(np.int)
img2 = np.concatenate((img2, edge2[..., np.newaxis]), axis=2)
img2 = img2.transpose((2, 0, 1)).astype(np.float32) / 128
lbl = cv2.imread(lbl_file, cv2.IMREAD_UNCHANGED)
lbl = cv2.resize(lbl, img_size)
lbl = np.asarray(lbl)
return img1, img2, lbl
def __len__(self):
return len(self.images)
class LossTotal(nn.Module):
def __init__(self,weight_ba_loss,weight_ce_loss):
super(LossTotal,self).__init__()
self.bn=nn.BatchNorm2d(num_features=1)
torch.nn.init.constant(self.bn.weight, 1)
self.bn.to(device)
self.ce_loss=nn.CrossEntropyLoss(weight=torch.FloatTensor([1,36]).to(device=device))
self.weight_ba_loss = weight_ba_loss
self.weight_ce_loss = weight_ce_loss
def forward(self,y,lbl):
ce_loss = self.ce_loss(y, lbl)
diff = y[:, 1] - y[:, 0] # 第1维大的为changed
diff = torch.unsqueeze(diff, 1)
diff = self.bn(diff)
diff = torch.sigmoid(diff)
lbl_float = lbl.float()
iou_loss = 1-torch.sum(diff * lbl_float) / torch.sum(diff + lbl_float - diff * lbl_float)
loss = iou_loss * self.weight_ba_loss+ce_loss*self.weight_ce_loss
return loss
def main():
strtime = datetime.datetime.now().strftime('%m-%d')
log_dir = 'logger/' + DATA_SET + '_' + MODEL + '_' + strtime + '-1'
if not os.path.exists(log_dir):
os.mkdir(log_dir)
logging.basicConfig(filename=log_dir + '/logging.log', level=logging.INFO,
format='[%(asctime)s] %(message)s', datefmt='%H:%M:%S')
from tensorboardX import SummaryWriter
my_log_info='training SUNet with HTCD dataset\nlogdir:'+log_dir
writer = SummaryWriter(log_dir + '/TensorBoard')
writer.add_text(tag='my_log_info',text_string=my_log_info)
weights_dir=log_dir+'/weights'
if not os.path.exists(weights_dir):
os.mkdir(weights_dir)
logger=logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stdout))
logging.info(my_log_info)
batch_size = 5
lr = 0.005
lr_step_size = 1000
lr_decay = 1
val_ratio = 0.2
dataset = HTCD(data_dir)
train_data, validation_data = random_split(dataset, [round((1 - val_ratio) * len(dataset)),
round(val_ratio * len(dataset))])
logging.info('training set:%d patches' % len(train_data))
train_dataloader = DataLoader(train_data, batch_size=batch_size,
shuffle=True, num_workers=4, pin_memory=True)
logging.info('validation set:%d patches' % len(validation_data))
validation_dataloader = DataLoader(validation_data, batch_size=batch_size,
shuffle=False, num_workers=4, pin_memory=True)
# 用于tensorboard画图的input tensor
rand_tensor_t0 = torch.rand(1, 4, 256, 256).to(device, dtype=torch.float)
rand_tensor_t1 = torch.rand(1, 4, 2048, 2048).to(device, dtype=torch.float)
model = SUNnet().to(device, dtype=torch.float)
if resume_model!=None:
checkpoint=torch.load(resume_model)
model.load_state_dict(checkpoint['model_state_dict'])
logging.info('resume success')
writer.add_graph(model,(rand_tensor_t0,rand_tensor_t1))
weight_ba_loss = 0.67 # iou_loss的权值
weight_ce_loss = 0.33 # cross_entropy_loss的权值
momentum=0.9
weight_decay=0.0005
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
lr_scheduler=torch.optim.lr_scheduler.StepLR(optimizer,step_size=lr_step_size,gamma=lr_decay)
loss_t=LossTotal(weight_ba_loss=weight_ba_loss,weight_ce_loss=weight_ce_loss)
#每个epoch记录一次trainloss,计算一次validation loss,没100个batch记录一次100平均loss
ave_loss_total=[]
ave_loss_validation=[]
ave_loss_100 = []
logger.info('training ready.MetaData:\n lr:%f,lr_step_size:%d,lr_decay:%f,momentum:%f,weight_decay:%f\n'
'weight_ba_loss:%f,weight_ce_loss:%f\nval_radio:%f'
%(lr,lr_step_size,lr_decay,momentum,weight_decay,weight_ba_loss,weight_ce_loss,val_ratio))
for epoch in range(EPOCHES):
loss_100=[]
loss_total=[]
model.train()
union_total=0
intersection_total=0
for i, data in enumerate(train_dataloader):
x1, x2, lbl = data
x1 = x1.to(device, dtype=torch.float)
x2 = x2.to(device, dtype=torch.float)
lbl = lbl.to(device, dtype=torch.long)
y = model(x1,x2)
optimizer.zero_grad()
loss = loss_t(y, lbl)
loss.backward()
optimizer.step()
lr_scheduler.step(epoch)
loss_100.append(loss.item())
loss_total.append(loss.item())
pre_label = y[:, 0] < y[:, 1] # 第1维大的为 changed
intersection = pre_label[lbl == 1].long().sum()
union = pre_label.sum() + lbl.sum() - intersection
intersection_total += intersection
union_total += union
if(i%100==0 and i>0):
mean_loss=np.mean(loss_100)
writer.add_scalar('loss_100',mean_loss,global_step=len(ave_loss_100))
logging.info('average loss of batch '+str(i-99)+'-'+str(i)+':'+str(mean_loss))
ave_loss_100.append(mean_loss)
loss_100 = []
mean_loss=np.mean(loss_total)
writer.add_scalar('loss_total',mean_loss,global_step=epoch)
iou=(intersection_total.float()/union_total.float()).cpu().numpy()
writer.add_scalar('iou_train',iou,global_step=epoch)
logging.info('average loss of epoch'+str(epoch)+':'+str(mean_loss))
logging.info('average train iou of epoch ' + str(epoch) + ': ' + str(iou))
ave_loss_total.append(mean_loss)
# validation
loss_total = []
intersection_total = 0
union_total = 0
TP_total = 0
TN_total = 0
FP_total = 0
FN_total = 0
model.eval()
for i, data in enumerate(validation_dataloader):
x1, x2, lbl = data
x1 = x1.to(device, dtype=torch.float)
x2 = x2.to(device, dtype=torch.float)
lbl = lbl.to(device, dtype=torch.long)
y = model(x1, x2)
loss = loss_t(y, lbl)
loss_total.append(loss.item())
pre_label = y[:, 0] < y[:, 1] # 第1维大的为真
TP = intersection = pre_label[lbl == 1].long().sum()
union = pre_label.sum() + lbl.sum() - intersection
intersection_total += intersection.item()
union_total += union.item()
FN = (1 - pre_label)[lbl == 1].long().sum()
TN = (1 - pre_label)[lbl == 0].long().sum()
FP = pre_label[lbl == 0].long().sum()
TP_total += TP.item()
TN_total += TN.item()
FP_total += FP.item()
FN_total += FN.item()
mean_loss = np.mean(loss_total)
writer.add_scalar('loss_validation', mean_loss, global_step=epoch)
lbl_total = FP_total + TP_total + TN_total + FN_total
precision = TP_total / (TP_total + FP_total+0.01)
recall = TP_total / (TP_total + FN_total+0.01)
F1 = 2 * precision * recall / (precision + recall+0.01)
OA = (TP_total + TN_total) / (lbl_total)
iou = float(intersection_total) / (union_total+0.01)
metric_msg = "diff_lbl_sum:%d,precision:%.5f,recall:%.5f,F1 score:%.5f,OA:%.5f,iou:%.5f" % \
(lbl_total - FP_total - TP_total - TN_total - FN_total, precision, recall, F1, OA, iou)
logging.info('validation metrics of epoch ' + str(epoch) + metric_msg)
writer.add_scalar('iou_validation', iou, global_step=epoch)
ave_loss_validation.append(mean_loss)
logging.info('validation loss:' + str(mean_loss))
torch.save({'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss}, weights_dir + '/model_para_{}.pth'.format(epoch))
if __name__ == '__main__':
main()