-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimportant_bigrams.py
60 lines (47 loc) · 1.7 KB
/
important_bigrams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import json
import pickle
import time
import nltk
from nltk import BigramAssocMeasures, BigramCollocationFinder
from nltk.corpus import stopwords
from plotting import bar_graph
start = time.time()
english_stopwords = stopwords.words('english')
# Load in unigrams
with open('data/all_words.json', 'r') as f:
all_words = json.load(f)
def filter_pos(bigram):
adj_noun = ('JJ', 'JJR', 'JJS', 'NN', 'NNS') # , 'NNP', 'NNPS')
noun = ('NN', 'NNS') # , 'NNP', 'NNPS')
titled = []
for w in bigram:
if w in english_stopwords:
return False
titled.append(w.title())
tags = nltk.pos_tag(bigram)
title_tags = nltk.pos_tag(tuple(titled)) # To eliminate proper nouns from overfilling the top 20
if tags[0][1] in adj_noun and tags[1][1] in noun:
if not (title_tags[0][1].endswith('P') or title_tags[1][1].endswith('P')):
return True
return False
measures = BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(all_words)
finder.apply_freq_filter(20)
# Mark each bigram with its PMI
stats = finder.score_ngrams(measures.pmi)
stats.sort(key=lambda g: -g[1]) # Sort by PMI from high to low
# Get top 20 bigrams that match the POS filter
pos_stats = []
i = 0
while len(pos_stats) < 50 and i < len(stats):
if filter_pos(stats[i][0]):
pos_stats.append(stats[i])
i += 1
# Update the suggestions dict
with open('data/suggestions.pickle', 'rb') as f:
suggestions = pickle.load(f)
suggestions.update({' '.join(ngram): pmi for ngram, pmi in pos_stats})
with open('data/suggestions.pickle', 'wb') as f:
pickle.dump(suggestions, f)
print(f'Time elapsed: {time.time() - start}s')
bar_graph(pos_stats[:20], 20, ['pmi', 'bigram'])