-
Notifications
You must be signed in to change notification settings - Fork 2
/
lovasz_losses_tf.py
168 lines (148 loc) · 7.04 KB
/
lovasz_losses_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
Lovasz-Softmax and Jaccard hinge loss in Tensorflow
Maxim Berman 2018 ESAT-PSI KU Leuven (MIT License)
"""
from __future__ import print_function, division
import tensorflow as tf
import numpy as np
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
gts = tf.reduce_sum(gt_sorted) # number of elements of the computing class
intersection = gts - tf.cumsum(gt_sorted) #
union = gts + tf.cumsum(1. - gt_sorted)
jaccard = 1. - intersection / union
jaccard = tf.concat((jaccard[0:1], jaccard[1:] - jaccard[:-1]), 0)
return jaccard
# --------------------------- MULTICLASS LOSSES ---------------------------
def lovasz_softmax(probas, labels, classes='all', per_image=False, ignore=None, order='BHWC'):
# lovasz_softmax(probas=tf.nn.softmax(output), labels=tf.argmax(label, axis=3), classes='present', per_image=False, ignore=n_classes, order='BHWC')
"""
Multi-class Lovasz-Softmax loss
probas: [B, H, W, C] or [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1)
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
per_image: compute the loss per image instead of per batch
ignore: void class labels
order: use BHWC or BCHW
"""
if per_image:
def treat_image(prob_lab):
prob, lab = prob_lab
prob, lab = tf.expand_dims(prob, 0), tf.expand_dims(lab, 0)
prob, lab = flatten_probas(prob, lab, ignore, order)
return lovasz_softmax_flat(prob, lab, classes=classes)
losses = tf.map_fn(treat_image, (probas, labels), dtype=tf.float32)
loss = tf.reduce_mean(losses)
else:
loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore, order), classes=classes)
return loss
def lovasz_softmax_flat(probas, labels, classes='all'):
"""
Multi-class Lovasz-Softmax loss
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
"""
C = probas.shape[1]
losses = []
present = [] # vector of dimension [N_classes]. present[class_i] will have the value of the number of pixels of that class in the ground truth
class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes # vector from 0 to Nn_clases [0,1,....,n_classes]
for c in class_to_sum:
fg = tf.cast(tf.equal(labels, c), probas.dtype) # foreground for class c, fg is a vector of size [N_pixels]. [1,0,1,0,0,0,0,1,0,1...] where 1's means that the pixel is of the class [c]
if classes == 'present':
present.append(tf.reduce_sum(fg) > 0) # Adds to vector [present] if the class is present in the Gound truth
errors = tf.abs(fg - probas[:, c]) # errors is a vector of size [n_pixels] calculates the error for the class [c]. (1 - predicted probability) for ground truth labels of class [c].
errors_sorted, perm = tf.nn.top_k(errors, k=tf.shape(errors)[0], name="descending_sort_{}".format(c)) # ordena los errores..
fg_sorted = tf.gather(fg, perm) # vector fg sorted by error
grad = lovasz_grad(fg_sorted)
losses.append(
tf.tensordot(errors_sorted, tf.stop_gradient(grad), 1, name="loss_class_{}".format(c))
)
if len(class_to_sum) == 1: # short-circuit mean when only one class
return losses[0]
losses_tensor = tf.stack(losses)
if classes == 'present':
present = tf.stack(present)
losses_tensor = tf.boolean_mask(losses_tensor, present)
loss = tf.reduce_mean(losses_tensor)
return loss
# Flatten probabilities and labels from [B, H, W, C] to [N, C] and from [B, H, W] to [N]
# It also ignores the labels and probabilities where labels==label_to_ignore
def flatten_probas(probas, labels, ignore=None, order='BHWC'):
"""
Flattens predictions in the batch
"""
if order == 'BCHW':
probas = tf.transpose(probas, (0, 2, 3, 1), name="BCHW_to_BHWC")
order = 'BHWC'
if order != 'BHWC':
raise NotImplementedError('Order {} unknown'.format(order))
C = probas.shape[3]
probas = tf.reshape(probas, (-1, C))
labels = tf.reshape(labels, (-1,))
if ignore is None:
return probas, labels
valid = tf.not_equal(labels, ignore)
vprobas = tf.boolean_mask(probas, valid, name='valid_probas')
vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
return vprobas, vlabels
# --------------------------- BINARY LOSSES ---------------------------
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
"""
Binary Lovasz hinge loss
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
per_image: compute the loss per image instead of per batch
ignore: void class id
"""
if per_image:
def treat_image(log_lab):
log, lab = log_lab
log, lab = tf.expand_dims(log, 0), tf.expand_dims(lab, 0)
log, lab = flatten_binary_scores(log, lab, ignore)
return lovasz_hinge_flat(log, lab)
losses = tf.map_fn(treat_image, (logits, labels), dtype=tf.float32)
loss = tf.reduce_mean(losses)
else:
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
return loss
def lovasz_hinge_flat(logits, labels):
"""
Binary Lovasz hinge loss
logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
labels: [P] Tensor, binary ground truth labels (0 or 1)
ignore: label to ignore
"""
def compute_loss():
labelsf = tf.cast(labels, logits.dtype)
signs = 2. * labelsf - 1.
errors = 1. - logits * tf.stop_gradient(signs)
errors_sorted, perm = tf.nn.top_k(errors, k=tf.shape(errors)[0], name="descending_sort")
gt_sorted = tf.gather(labelsf, perm)
grad = lovasz_grad(gt_sorted)
loss = tf.tensordot(tf.nn.relu(errors_sorted), tf.stop_gradient(grad), 1, name="loss_non_void")
return loss
# deal with the void prediction case (only void pixels)
loss = tf.cond(tf.equal(tf.shape(logits)[0], 0),
lambda: tf.reduce_sum(logits) * 0.,
compute_loss,
strict=True,
name="loss"
)
return loss
def flatten_binary_scores(scores, labels, ignore=None):
"""
Flattens predictions in the batch (binary case)
Remove labels equal to 'ignore'
"""
scores = tf.reshape(scores, (-1,))
labels = tf.reshape(labels, (-1,))
if ignore is None:
return scores, labels
valid = tf.not_equal(labels, ignore)
vscores = tf.boolean_mask(scores, valid, name='valid_scores')
vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
return vscores, vlabels