-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeneration_utils.py
2839 lines (2486 loc) · 151 KB
/
generation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import warnings
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import nn
from transformers.file_utils import ModelOutput
from transformers.generation_beam_search import BeamScorer, BeamSearchScorer
from transformers.generation_logits_process import (
EncoderNoRepeatNGramLogitsProcessor,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitsProcessorList,
MinLengthLogitsProcessor,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
)
from transformers.generation_stopping_criteria import (
MaxLengthCriteria,
MaxTimeCriteria,
StoppingCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
@dataclass
class GreedySearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using greedy search.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each
tensor of shape `(batch_size, config.vocab_size)`).
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class GreedySearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using greedy search. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape
`(batch_size, config.vocab_size)`).
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class SampleDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using sampling.
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each
tensor of shape `(batch_size*num_return_sequences, config.vocab_size)`).
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(num_return_sequences*batch_size, num_heads, generated_length,
sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(num_return_sequences*batch_size, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class SampleEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using sampling. Hidden states and attention weights of
the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. `(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape
`(batch_size*num_return_sequences, config.vocab_size)`).
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape
`(batch_size*num_return_sequences, num_heads, sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_return_sequences, num_heads, generated_length,
sequence_length)`.
cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSearchDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using beam search.
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each tensor of shape
`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `(batch_size*num_return_sequences)`-shaped
tuple of `(max_length-input_ids.shape[-1],)`-shaped tuples of scalar `torch.LongTensor` tensors.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[Tuple[Tuple[torch.LongTensor]]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSearchEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using beam search. Hidden states and attention weights
of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the encoder_hidden_states
attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape `(batch_size*num_beams,
config.vocab_size)`).
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `(batch_size*num_return_sequences)`-shaped
tuple of `(max_length-1,)`-shaped tuples of scalar `torch.LongTensor` tensors.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
sequence_length)`.
cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[Tuple[Tuple[torch.LongTensor]]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSampleDecoderOnlyOutput(ModelOutput):
"""
Base class for outputs of decoder-only generation models using beam sample.
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-input_ids.shape[-1],)`-shaped tuple of `torch.FloatTensor` with each tensor of shape
`(batch_size*num_beams*num_return_sequences, config.vocab_size)`).
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `(batch_size*num_return_sequences)`-shaped
tuple of `(max_length-input_ids.shape[-1],)`-shaped tuples of scalar `torch.LongTensor` tensors.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[Tuple[Tuple[torch.LongTensor]]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
@dataclass
class BeamSampleEncoderDecoderOutput(ModelOutput):
"""
Base class for outputs of encoder-decoder generation models using beam sampling. Hidden states and attention
weights of the decoder (respectively the encoder) can be accessed via the encoder_attentions and the
encoder_hidden_states attributes (respectively the decoder_attentions and the decoder_hidden_states attributes)
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_beams, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size * num_return_sequence)`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
`(max_length-1,)`-shaped tuple of `torch.FloatTensor` with each tensor of shape `(batch_size*num_beams,
config.vocab_size)`).
beam_indices (`tuple(tuple(torch.LongTensor))`, *optional*, returned when `output_scores=True` is passed or when `config.output_scores=True`):
Beam indices of generated token id at each generation step. `(batch_size*num_return_sequences)`-shaped
tuple of `(max_length-1,)`-shaped tuples of scalar `torch.LongTensor` tensors.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size*num_beams, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or `config.output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, generated_length, hidden_size)`.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[Tuple[Tuple[torch.LongTensor]]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
class GenerationMixin:
"""
A class containing all of the functions supporting generation, to be used as a mixin in [`PreTrainedModel`].
"""
def _prepare_model_inputs(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
"""
This function extracts the model-specific `inputs` for generation.
"""
# 1. retrieve all kwargs that are non-None or non-model input related.
# some encoder-decoder models have different names for model and encoder
if (
self.config.is_encoder_decoder
and hasattr(self, "encoder")
and self.encoder.main_input_name != self.main_input_name
):
input_name = self.encoder.main_input_name
else:
input_name = self.main_input_name
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}
# 2. check whether model_input_name is passed as kwarg
# if yes and `inputs` is None use kwarg inputs
inputs_kwarg = model_kwargs.pop(input_name, None)
if inputs_kwarg is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs}` were passed alongside "
f"{input_name} which is not allowed."
f"Make sure to either pass {inputs} or {input_name}=..."
)
elif inputs_kwarg is not None:
inputs = inputs_kwarg
# 3. models with `input_ids` can also make use of `inputs_embeds`
if self._can_retrieve_inputs_from_name(inputs, "inputs_embeds", model_kwargs):
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
# 4. Only encoder-decoder models can have non `input_ids` input format
if not self.config.is_encoder_decoder and input_name != "input_ids":
raise ValueError(
f"If {input_name} is passed as model-specific keyword "
"input then model has to be an encoder-decoder and not a "
f"{self.__class__.__name__}."
)
# 5. if `inputs` is still None, try to create `input_ids` from BOS token
if inputs is None:
inputs = self._prepare_input_ids_for_generation(bos_token_id, model_kwargs.get("encoder_outputs"))
return inputs, input_name, model_kwargs
def _can_retrieve_inputs_from_name(
self, inputs: Optional[torch.Tensor], name: str, model_kwargs: Dict[str, torch.Tensor]
) -> torch.Tensor:
"""
If `inputs` is None and `name` is in both forward function and keyword arguments, then inputs can be retrieved
from name
"""
can_retrieve_inputs = model_kwargs.get(name, None) is not None and name in set(
inspect.signature(self.forward).parameters.keys()
)
if can_retrieve_inputs and inputs is not None:
raise ValueError(f"Cannot only pass one of {name} and {self.main_input_name}")
return can_retrieve_inputs
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]:
"""
Implement in subclasses of [`PreTrainedModel`] for custom behavior to prepare inputs in the generate method.
"""
return {"input_ids": input_ids}
def adjust_logits_during_generation(self, logits: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
"""
Implement in subclasses of [`PreTrainedModel`] for custom behavior to adjust the logits in the generate method.
"""
return logits
def _prepare_input_ids_for_generation(
self, bos_token_id: Optional[int], encoder_outputs: Optional[ModelOutput]
) -> torch.LongTensor:
if self.config.is_encoder_decoder and encoder_outputs is not None:
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
shape = encoder_outputs.last_hidden_state.size()[:-1]
return torch.ones(shape, dtype=torch.long, device=self.device) * -100
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
return torch.ones((1, 1), dtype=torch.long, device=self.device) * bos_token_id
def _prepare_attention_mask_for_generation(
self,
inputs: torch.Tensor,
pad_token_id: int,
eos_token_id: int,
) -> torch.LongTensor:
is_input_ids = len(inputs.shape) == 2 and inputs.dtype in [torch.int, torch.long]
is_pad_token_in_inputs = (pad_token_id is not None) and (pad_token_id in inputs)
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or (
(eos_token_id is not None) and (pad_token_id != eos_token_id)
)
# Check if input is input_ids and padded -> only then is attention_mask defined
if is_input_ids and is_pad_token_in_inputs and is_pad_token_not_equal_to_eos_token_id:
return inputs.ne(pad_token_id).long()
else:
return torch.ones(inputs.shape[:2], dtype=torch.long, device=self.device)
def _prepare_encoder_decoder_kwargs_for_generation(
self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
) -> Dict[str, Any]:
# 1. get encoder
encoder = self.get_encoder()
# 2. prepare encoder args and encoder kwargs from model kwargs
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.main_input_name
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs)
return model_kwargs
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
decoder_start_token_id: int = None,
bos_token_id: int = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor:
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
return model_kwargs.pop("decoder_input_ids")
else:
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * decoder_start_token_id
def _get_pad_token_id(self, pad_token_id: int = None, eos_token_id: int = None) -> int:
if pad_token_id is None and eos_token_id is not None:
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
pad_token_id = eos_token_id
return pad_token_id
def _get_decoder_start_token_id(self, decoder_start_token_id: int = None, bos_token_id: int = None) -> int:
decoder_start_token_id = (
decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id
)
bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id
if decoder_start_token_id is not None:
return decoder_start_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "decoder_start_token_id")
and self.config.decoder.decoder_start_token_id is not None
):
return self.config.decoder.decoder_start_token_id
elif bos_token_id is not None:
return bos_token_id
elif (
hasattr(self.config, "decoder")
and hasattr(self.config.decoder, "bos_token_id")
and self.config.decoder.bos_token_id is not None
):
return self.config.decoder.bos_token_id
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
@staticmethod
def _expand_inputs_for_generation(
input_ids: torch.LongTensor,
expand_size: int = 1,
is_encoder_decoder: bool = False,
attention_mask: torch.LongTensor = None,
encoder_outputs: ModelOutput = None,
**model_kwargs,
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
expanded_return_idx = (
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
)
input_ids = input_ids.index_select(0, expanded_return_idx)
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)
if attention_mask is not None:
model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
if is_encoder_decoder:
if encoder_outputs is None:
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
0, expanded_return_idx.to(encoder_outputs.last_hidden_state.device)
)
model_kwargs["encoder_outputs"] = encoder_outputs
return input_ids, model_kwargs
@staticmethod
def _update_model_kwargs_for_generation(
outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False
) -> Dict[str, Any]:
# update past
if "past_key_values" in outputs:
model_kwargs["past"] = outputs.past_key_values
elif "mems" in outputs:
model_kwargs["past"] = outputs.mems
elif "past_buckets_states" in outputs:
model_kwargs["past"] = outputs.past_buckets_states
else:
model_kwargs["past"] = None
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update attention mask
if not is_encoder_decoder:
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
return model_kwargs
def _reorder_cache(self, past, beam_idx):
raise NotImplementedError(
f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to enable beam search for {self.__class__}"
)
def _get_logits_warper(
self, top_k: int = None, top_p: float = None, temperature: float = None, num_beams: int = None
) -> LogitsProcessorList:
"""
This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsWarper`] instances
used for multinomial sampling.
"""
# init warp parameters
top_k = top_k if top_k is not None else self.config.top_k
top_p = top_p if top_p is not None else self.config.top_p
temperature = temperature if temperature is not None else self.config.temperature
# instantiate warpers list
warpers = LogitsProcessorList()
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if temperature is not None and temperature != 1.0:
warpers.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
warpers.append(TopKLogitsWarper(top_k=top_k, min_tokens_to_keep=(2 if num_beams > 1 else 1)))
if top_p is not None and top_p < 1.0:
warpers.append(TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=(2 if num_beams > 1 else 1)))
return warpers
def _get_logits_processor(
self,
repetition_penalty: float,
no_repeat_ngram_size: int,
encoder_no_repeat_ngram_size: int,
encoder_input_ids: torch.LongTensor,
bad_words_ids: List[List[int]],
min_length: int,
max_length: int,
eos_token_id: int,
forced_bos_token_id: int,
forced_eos_token_id: int,
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
num_beams: int,
num_beam_groups: int,
diversity_penalty: float,
remove_invalid_values: bool,
logits_processor: Optional[LogitsProcessorList],
) -> LogitsProcessorList:
"""
This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
instances used to modify the scores of the language model head.
"""
processors = LogitsProcessorList()
# init warp parameters
repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty
no_repeat_ngram_size = (
no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size
)
encoder_no_repeat_ngram_size = (
encoder_no_repeat_ngram_size
if encoder_no_repeat_ngram_size is not None
else self.config.encoder_no_repeat_ngram_size
)
bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids
min_length = min_length if min_length is not None else self.config.min_length
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
diversity_penalty = diversity_penalty if diversity_penalty is not None else self.config.diversity_penalty
forced_bos_token_id = (
forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id
)
forced_eos_token_id = (
forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id
)
remove_invalid_values = (
remove_invalid_values if remove_invalid_values is not None else self.config.remove_invalid_values
)
# instantiate processors list
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if diversity_penalty is not None and diversity_penalty > 0.0:
processors.append(
HammingDiversityLogitsProcessor(
diversity_penalty=diversity_penalty, num_beams=num_beams, num_beam_groups=num_beam_groups
)
)
if repetition_penalty is not None and repetition_penalty != 1.0:
processors.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
if no_repeat_ngram_size is not None and no_repeat_ngram_size > 0:
processors.append(NoRepeatNGramLogitsProcessor(no_repeat_ngram_size))
if encoder_no_repeat_ngram_size is not None and encoder_no_repeat_ngram_size > 0:
if self.config.is_encoder_decoder:
processors.append(EncoderNoRepeatNGramLogitsProcessor(encoder_no_repeat_ngram_size, encoder_input_ids))
else:
raise ValueError(
"It's impossible to use `encoder_no_repeat_ngram_size` with decoder-only architecture"
)
if bad_words_ids is not None:
processors.append(NoBadWordsLogitsProcessor(bad_words_ids, eos_token_id))
if min_length is not None and eos_token_id is not None and min_length > -1:
processors.append(MinLengthLogitsProcessor(min_length, eos_token_id))
if prefix_allowed_tokens_fn is not None:
processors.append(PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, num_beams // num_beam_groups))
if forced_bos_token_id is not None:
processors.append(ForcedBOSTokenLogitsProcessor(forced_bos_token_id))
if forced_eos_token_id is not None:
processors.append(ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id))
if remove_invalid_values is True:
processors.append(InfNanRemoveLogitsProcessor())
processors = self._merge_criteria_processor_list(processors, logits_processor)
return processors
def _get_stopping_criteria(
self, max_length: Optional[int], max_time: Optional[float], stopping_criteria: Optional[StoppingCriteriaList]
) -> StoppingCriteriaList:
criteria = StoppingCriteriaList()
if max_length is not None:
criteria.append(MaxLengthCriteria(max_length=max_length))
if max_time is not None:
criteria.append(MaxTimeCriteria(max_time=max_time))
criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
return criteria
def _merge_criteria_processor_list(
self,
default_list: Union[LogitsProcessorList, StoppingCriteriaList],
custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
) -> Union[LogitsProcessorList, StoppingCriteriaList]:
if len(custom_list) == 0:
return default_list
for default in default_list:
for custom in custom_list:
if type(custom) is type(default):
object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
raise ValueError(
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to `generate`, "
f"but it has already been created with the values {default}. {default} has been created by passing the "
"corresponding arguments to generate or by the model's config default values. "
f"If you just want to change the default values of {object_type} consider passing them as arguments "
f"to `generate` instead of using a custom {object_type}."
)
default_list.extend(custom_list)
return default_list
def compute_transition_beam_scores(
self,
sequences: torch.Tensor,
scores: Tuple[torch.Tensor],
beam_indices: torch.Tensor,
eos_token_id: int = None,
):
"""compute the transition probabilities of sequences given generation
scores and beam indices"""
# reshape scores as [vocab_size * batch_size, # generation steps]
# with batch_size being 2 * vocab_size and # generation steps being
# seq_len - input_length
scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)
# start of generated tokens
cut_idx = sequences.shape[-1] - scores.shape[-1]
# adjust for beam indices
beam_sequence_indices = torch.tensor(beam_indices, device=sequences.device) * self.config.vocab_size
# compute real indices
indices = sequences[:, cut_idx:] + beam_sequence_indices
# gather scores and run
transition_scores = scores.gather(0, indices)
# make sure that if EOS token was used before length of sequence `sequence.shape[-1]`
# get first occurence of EOS token
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
if eos_token_id is not None:
is_eos_token_id = sequences[:, cut_idx:] == eos_token_id
# make sure first eos token still contributes to transition probs
is_eos_token_id[:, -1] = False
is_eos_token_id = is_eos_token_id.roll(1, -1)
# all indices after eos shoud be masked
zero_transition_prob_mask = is_eos_token_id.cumsum(-1).bool()
# zero out padded probs
transition_scores.masked_fill_(zero_transition_prob_mask, 0.0)
return transition_scores
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
max_length: Optional[int] = None,
min_length: Optional[int] = None,
do_sample: Optional[bool] = None,
early_stopping: Optional[bool] = None,
num_beams: Optional[int] = None,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
bad_words_ids: Optional[Iterable[int]] = None,
bos_token_id: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
no_repeat_ngram_size: Optional[int] = None,
encoder_no_repeat_ngram_size: Optional[int] = None,
num_return_sequences: Optional[int] = None,
max_time: Optional[float] = None,
max_new_tokens: Optional[int] = None,
decoder_start_token_id: Optional[int] = None,
use_cache: Optional[bool] = None,
num_beam_groups: Optional[int] = None,
diversity_penalty: Optional[float] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(),
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
forced_bos_token_id: Optional[int] = None,
forced_eos_token_id: Optional[int] = None,
remove_invalid_values: Optional[bool] = None,
synced_gpus: Optional[bool] = None,
**model_kwargs,
) -> Union[GreedySearchOutput, SampleOutput, BeamSearchOutput, BeamSampleOutput, torch.LongTensor]:
r"""
Generates sequences for models with a language modeling head. The method currently supports greedy decoding,
multinomial sampling, beam-search decoding, and beam-search multinomial sampling.
Apart from `inputs`, all the arguments below will default to the value of the attribute of the same name inside
the [`PretrainedConfig`] of the model. The default values indicated are the default values of those config.
Most of these parameters are explained in more detail in [this blog
post](https://huggingface.co/blog/how-to-generate).
Parameters:
inputs (`torch.Tensor` of shape `(batch_size, sequence_length)`, `(batch_size, sequence_length,
feature_dim)` or `(batch_size, num_channels, height, width)`, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
max_length (`int`, *optional*, defaults to `model.config.max_length`):
The maximum length of the sequence to be generated.
max_new_tokens (`int`, *optional*, defaults to None):
The maximum numbers of tokens to generate, ignore the current number of tokens. Use either
`max_new_tokens` or `max_length` but not both, they serve the same purpose.
min_length (`int`, *optional*, defaults to 10):
The minimum length of the sequence to be generated.
do_sample (`bool`, *optional*, defaults to `False`):
Whether or not to use sampling ; use greedy decoding otherwise.
early_stopping (`bool`, *optional*, defaults to `False`):
Whether to stop the beam search when at least `num_beams` sentences are finished per batch or not.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
temperature (`float`, *optional*, defaults to 1.0):
The value used to module the next token probabilities.
top_k (`int`, *optional*, defaults to 50):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_p (`float`, *optional*, defaults to 1.0):
If set to float < 1, only the most probable tokens with probabilities that add up to `top_p` or higher
are kept for generation.
repetition_penalty (`float`, *optional*, defaults to 1.0):
The parameter for repetition penalty. 1.0 means no penalty. See [this
paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
bos_token_id (`int`, *optional*):
The id of the *beginning-of-sequence* token.
eos_token_id (`int`, *optional*):
The id of the *end-of-sequence* token.
length_penalty (`float`, *optional*, defaults to 1.0):
Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the
model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer
sequences.
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
If set to int > 0, all ngrams of that size can only occur once.
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0):
If set to int > 0, all ngrams of that size that occur in the `encoder_input_ids` cannot occur in the
`decoder_input_ids`.
bad_words_ids(`List[List[int]]`, *optional*):
List of token ids that are not allowed to be generated. In order to get the tokens of the words that
should not appear in the generated text, use `tokenizer(bad_word, add_prefix_space=True).input_ids`.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch.
max_time(`float`, *optional*, defaults to None):
The maximum amount of time you allow the computation to run for in seconds. generation will still
finish the current pass after allocated time has been passed.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values are in `[0, 1]`, 1 for tokens
that are not masked, and 0 for masked tokens. If not provided, will default to a tensor the same shape
as `input_ids` that masks the pad token. [What are attention masks?](../glossary#attention-mask)
decoder_start_token_id (`int`, *optional*):
If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token.
use_cache: (`bool`, *optional*, defaults to `True`):
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding.
num_beam_groups (`int`, *optional*, defaults to 1):
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of
beams. [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
diversity_penalty (`float`, *optional*, defaults to 0.0):
This value is subtracted from a beam's score if it generates a token same as any beam from other group
at a particular time. Note that `diversity_penalty` is only effective if `group beam search` is
enabled.
prefix_allowed_tokens_fn: (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and a
model's config. If a logit processor is passed that is already created with the arguments or a model's
config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
model's config. If a stopping criteria is passed that is already created with the arguments or a
model's config an error is thrown. This feature is intended for advanced users.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more details.
output_hidden_states (`bool`, *optional*, defaults to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more details.
output_scores (`bool`, *optional*, defaults to `False`):
Whether or not to return the prediction scores. See `scores` under returned tensors for more details.
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
forced_bos_token_id (`int`, *optional*):
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful
for multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be
the target language token.
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached.
remove_invalid_values (`bool`, *optional*):
Whether to remove possible *nan* and *inf* outputs of the model to prevent the generation method to
crash. Note that using `remove_invalid_values` can slow down generation.
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If the model
is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs
should be prefixed with *decoder_*.
Return:
[`~file_utils.ModelOutput`] or `torch.LongTensor`: A [`~file_utils.ModelOutput`] (if
`return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~file_utils.ModelOutput`] types are:
- [`~generation_utils.GreedySearchDecoderOnlyOutput`],
- [`~generation_utils.SampleDecoderOnlyOutput`],
- [`~generation_utils.BeamSearchDecoderOnlyOutput`],
- [`~generation_utils.BeamSampleDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~file_utils.ModelOutput`] types are:
- [`~generation_utils.GreedySearchEncoderDecoderOutput`],
- [`~generation_utils.SampleEncoderDecoderOutput`],
- [`~generation_utils.BeamSearchEncoderDecoderOutput`],
- [`~generation_utils.BeamSampleEncoderDecoderOutput`]
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
>>> # do greedy decoding without providing a prompt
>>> outputs = model.generate(max_length=40)
>>> print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> tokenizer = AutoTokenizer.from_pretrained("t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> document = (
... "at least two people were killed in a suspected bomb attack on a passenger bus "
... "in the strife-torn southern philippines on monday , the military said."
... )
>>> # encode input context
>>> input_ids = tokenizer(document, return_tensors="pt").input_ids