-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathintegrate.py
251 lines (226 loc) · 6.31 KB
/
integrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/usr/bin/env python3
import cv2
import pickle
import face_recognition
import imutils
import numpy as np
import pytesseract
import subprocess
import time
import RPi .GPIO as GPIO
from imutils.video import VideoStream
from time import sleep
from threading import Thread
from multiprocessing import Process, Pool
MOTOR_PIN1=5
MOTOR_PIN2=7
TRIGGER=40
ECHO=38
GREEN_LED=36
RED_LED=29
window_res=540,380
face_data = pickle.loads(open("../face_recognition/encodings.pkl","rb").read())
face_cascade = cv2.CascadeClassifier('../face_recognition/haarcascade_frontalface_default.xml')
GREEN = (0,255,0)
RED = (0,0,255)
ssdnet = cv2.dnn.readNetFromTensorflow('trained_model/frozen_inference_graph.pb','trained_model/graph.pbtxt')
KNOWN_PLATES=["HR26DK8337"]
GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setup(ECHO,GPIO.IN)
GPIO.setup(TRIGGER,GPIO.OUT)
GPIO.setup(GREEN_LED,GPIO.OUT)
GPIO.setup(RED_LED,GPIO.OUT)
def get_text():
global plate,splate,text
plate = cv2.GaussianBlur(plate, (7, 7), 0)
plate = cv2.erode(plate, (4, 4))
plate = cv2.dilate(plate, (4, 4))
splate = cv2.adaptiveThreshold(plate,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,7,2)
text=pytesseract.image_to_string(splate,lang='eng',config="--oem 0 -c tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ")
if len(text)>0 and len(text)<16:
print(text)
verify_plate()
def verify_plate():
global text,VERIFIED,COLOR
for pl in KNOWN_PLATES:
goch=0
for key in pl:
if key in text[goch:]:
goch+=1
if goch/len(pl)>=0.8:
VERIFIED=True
COLOR=GREEN
print("[*] Number Plate Verified",pl,"\t",goch/len(pl)*100,"%")
def determine_faces(encoding):
global face_data,COLOR
matches = face_recognition.compare_faces(face_data["encodings"],encoding)
name="Unknown"
if True in matches:
matchIdx = [i for (i,b) in enumerate(matches) if b]
counts = {}
for i in matchIdx:
name=face_data["names"][i]
counts[name] = counts.get(name,0) + 1
name = max(counts,key=counts.get)
COLOR=GREEN
return name
def verify_faces(names):
global VERIFIED_FACE,COLOR,det_names
for name in names:
if name!="Unknown":
det_names[name]+=1
if det_names[name]>=3:
VERIFIED_FACE=True
COLOR=GREEN
print("[*] Authorization complete with",name,'.')
def unload_buffer():
global cam
for i in range(10):
cam.read()
#cam = cv2.VideoCapture(0)
cam = VideoStream(src=0).start()
VERIFIED=False
VERIFIED_FACE=False
COLOR=RED
det_names=dict.fromkeys(set(face_data["names"]))
def recog_faces():
global VERIFIED_FACE,COLOR,det_names
for key in det_names.keys():
det_names[key]=0
VERIFIED_FACE=False
COLOR=RED
pol=Pool()
f=0
while True:
img = cam.read()
f+=1
if not f%10:
f=0
t1=Thread(target=unload_buffer)
t1.setDaemon(True)
t1.start()
img = cam.read()
# ret, img = cam.read()
# img = cv2.flip(img, 0)
# img = cv2.flip(img, 1)
img = imutils.resize(img,width=400)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
if len(faces)>0:
boxes = [(y,x+w,y+h,x) for (x,y,w,h) in faces]
encodings = face_recognition.face_encodings(rgb,boxes)
names=pol.starmap(determine_faces, [(encoding,) for encoding in encodings]) #Things I do for 'performance', #clusterfk
t1=Thread(target=verify_faces,args=(names,))
t1.setDaemon(True)
t1.start()
print(names)
else:
names=[]
boxes=[]
for((top,right,bottom,left),name) in zip(boxes,names):
cv2.rectangle(img,(left,top),(right,bottom),COLOR,2)
y = top-15 if top-15>15 else top+15
cv2.putText(img,name,(left,y),cv2.FONT_HERSHEY_SIMPLEX,0.75,COLOR,2)
try:
cv2.imshow('face_rec', img)
except:
pass
if VERIFIED_FACE:
print("[!] exitting face_rec")
break
key = cv2.waitKey(1) & 0xff
if key == ord('q'):
break
text=""
def detect_plates():
global plate,VERIFIED,COLOR
VERIFIED=False
COLOR=GREEN
f=0
crop=10
while True:
img = cam.read()
f+=1
if not f%10:
f=0
img = cv2.resize(img, (300, 300))
rows,cols,channels = img.shape
ssdnet.setInput(cv2.dnn.blobFromImage(img,size=(300,300),swapRB=True,crop=False))
netout = ssdnet.forward()
scores=[]
for detection in netout[0,0]:
scores.append(float(detection[2]))
if len(scores)>2:
first=np.argmax(scores)
scores.pop(first)
second=np.argmax(scores)
idtxs=[first,second]
else:
idtxs = range(len(scores))
for idx in idtxs:
detection=netout[0,0][idx]
score = float(detection[2])
if score >0.3:
left=int(detection[3]*cols)
top=int(detection[4]*rows)-15
right=int(detection[5]*cols)+10
bottom=int(detection[6]*rows)+15
cv2.rectangle(img, (left, top), (right, bottom), COLOR, 2)
# cv2.putText(img, str(score*100)[:5], (left, top),cv2.FONT_HERSHEY_SIMPLEX, 0.8, COLOR, 2)
plate = img[top+crop:bottom-crop,left+crop:right-crop]
try:
plate = cv2.cvtColor(plate, cv2.COLOR_BGR2GRAY)
#p1=Process(target=get_text, args=())
p1=Thread(target=get_text, args=())
p1.setDaemon(True)
p1.start()
cv2.imshow("plate",splate)
except:
pass
if VERIFIED:
print("[!] exitting plate_out")
break
cv2.imshow("plate_output", img)
key = cv2.waitKey(1) & 0xff
if key == ord('q'):
break
subprocess.call(['/home/pi/number_plate_detection/led.py'])
print("[*] Starting ultrasonic.")
while True:
time.sleep(1)
GPIO.output(TRIGGER,True)
time.sleep(0.00001)
GPIO.output(TRIGGER,False)
while GPIO.input(ECHO)==0:
start = time.time()
while GPIO.input(ECHO)==1:
stop = time.time()
time_elap = stop-start
distance = time_elap*17150
print("Distance:",distance)
if distance<25:
cv2.namedWindow("plate_output", cv2.WINDOW_NORMAL)
cv2.resizeWindow("plate_output", *window_res)
GPIO.output(RED_LED,GPIO.HIGH)
detect_plates()
cv2.destroyAllWindows()
if VERIFIED:
sleep(1)
VERIFIED_FACE=False
cv2.namedWindow("face_rec", cv2.WINDOW_NORMAL)
cv2.resizeWindow("face_rec", *window_res)
recog_faces()
if VERIFIED_FACE:
GPIO.output(RED_LED,GPIO.LOW)
GPIO.output(GREEN_LED,GPIO.HIGH)
cv2.destroyAllWindows()
subprocess.call(['/home/pi/number_plate_detection/dc_motor.py','1'])
sleep(4)
subprocess.call(['/home/pi/number_plate_detection/dc_motor.py','0'])
break
GPIO.output(GREEN_LED,GPIO.LOW)
sleep(2)
GPIO.output(RED_LED,GPIO.LOW)
cam.stop()