-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention.py
72 lines (56 loc) · 2.51 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import matplotlib.pyplot as plt
import numpy as np
from CR import * # Import everything from CR.py if needed
def visualize_attention(image, attention_map, title='Attention Map'):
#converting tensor to numpy array
image = image.permute(1, 2, 0).cpu().numpy()
attention_map = attention_map.squeeze().cpu().numpy()
# Normalize attention map to [0, 1] for visualization
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
# Ploting the image and attention map
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.title('Original Image')
plt.imshow(image)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title(title)
plt.imshow(image)
plt.imshow(attention_map, cmap='jet', alpha=0.5)
plt.axis('off')
plt.show()
def visualize_attention_from_model(model, dataloader, device):
model.eval()
with torch.no_grad():
for batch in dataloader:
images, _ = batch['image'], batch['label']
images = images.to(device)
# Forward pass to get attention maps
attention_maps = model(images)
for img, att_map in zip(images, attention_maps):
visualize_attention(img, att_map)
break
if __name__ == "__main__":
from datafetch import KittiDataset, collate_fn
from torchvision import transforms
from torch.utils.data import DataLoader
import torch
# Paths to data
val_img_dir = '/Users/shriyakumbhoje/Desktop/dissertation/pythonProject/yolov5/kittii/images1/val'
val_lbl_dir = '/Users/shriyakumbhoje/Desktop/dissertation/pythonProject/yolov5/kittii/images1/val_labels'
# Transformations
default_transform = transforms.Compose([
transforms.Resize((416, 416)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Initializing dataset and dataloader
val_dataset = KittiDataset(val_img_dir, val_lbl_dir, transform=default_transform)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, collate_fn=collate_fn)
# Loading model
model_path = '/Users/shriyakumbhoje/Desktop/dissertation/pythonProject/yolov5/runs/train/fine_tunned/weights/best.pt'
model = torch.load(model_path)
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
# Visualizing attention maps
visualize_attention_from_model(model, val_loader, torch.device('cuda' if torch.cuda.is_available() else 'cpu'))