-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathChaosEmptyAdSpoincare2.nb
11413 lines (11276 loc) · 580 KB
/
ChaosEmptyAdSpoincare2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 593637, 11403]
NotebookOptionsPosition[ 587459, 11293]
NotebookOutlinePosition[ 587819, 11309]
CellTagsIndexPosition[ 587776, 11306]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"Needs", "[", "\"\<VariationalMethods`\>\"", "]"}]], "Input",Expressi\
onUUID->"0969f764-a2e2-4495-825b-c3c7e3b9ff16"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"EulerEquations", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"a", "/",
RowBox[{"y", "[", "t", "]"}]}], ")"}],
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "^", "2"}]}], "]"}]}], "+", " ",
RowBox[{"q", "/",
RowBox[{"y", "[", "t", "]"}]}]}], ",",
RowBox[{"y", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.7682244869580107`*^9,
3.768224494517551*^9}},ExpressionUUID->"e543de1f-06bd-479a-9fbe-\
0cb6e6962b02"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"a", "+",
RowBox[{"q", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"q", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}]}], ")"}]}],
"-",
RowBox[{"a", " ",
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]]}], "\[Equal]", "0"}]], "Output",
CellChangeTimes->{
3.7682244952942743`*^9},ExpressionUUID->"f6ff5cc2-05dd-4996-87d5-\
818a638b1a24"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"a", "+",
RowBox[{"q", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"], " ",
RowBox[{"(",
RowBox[{"a", "+",
RowBox[{"q", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}]]}]}],
")"}]}], "-",
RowBox[{"a", " ",
RowBox[{"y", "[", "t", "]"}], " ",
RowBox[{
SuperscriptBox["y", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "t", "]"}]}]}],
RowBox[{
SuperscriptBox[
RowBox[{"y", "[", "t", "]"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{
SuperscriptBox["y", "\[Prime]",
MultilineFunction->None], "[", "t", "]"}], "2"]}], ")"}],
RowBox[{"3", "/", "2"}]]}]]}], "\[Equal]", "0"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "ys"}], ",",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "0", "]"}], "\[Equal]", "0"}]}], "}"}], ",",
RowBox[{"y", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{
3.7682245069894257`*^9, {3.7682250077809896`*^9,
3.768225008755239*^9}},ExpressionUUID->"7f9b9687-91d6-4d20-a6f8-\
e44153372b71"],
Cell[BoxData[
TemplateBox[{
"Solve","ifun",
"\"Inverse functions are being used by \
\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
Reduce for complete solution information.\"",2,4,5,22616342172476110681,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.7682245094921417`*^9,
3.7682250107802973`*^9},ExpressionUUID->"f2d97b61-4cbd-4777-b9f2-\
f5af06fb947d"],
Cell[BoxData[
TemplateBox[{
"Solve","ifun",
"\"Inverse functions are being used by \
\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
Reduce for complete solution information.\"",2,4,6,22616342172476110681,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.7682245094921417`*^9,
3.76822501093146*^9},ExpressionUUID->"d8cac1ca-5323-441d-8f73-7a6a743a5e42"],
Cell[BoxData[
TemplateBox[{
"Solve","ifun",
"\"Inverse functions are being used by \
\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
Reduce for complete solution information.\"",2,4,7,22616342172476110681,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.7682245094921417`*^9,
3.768225011076545*^9},ExpressionUUID->"9f1ae279-9a4c-404f-8eae-\
66f82f36c5d1"],
Cell[BoxData[
TemplateBox[{
"General","stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"Solve\\\", \\\"::\\\", \
\\\"ifun\\\"}], \\\"MessageName\\\"]\\) will be suppressed during this \
calculation.\"",2,4,8,22616342172476110681,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.7682245094921417`*^9,
3.768225011153974*^9},ExpressionUUID->"ada4d452-d4d7-45da-9fdd-\
6d19c72ad756"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "q"}], " ", "ys"}], "+",
RowBox[{"a", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}], "-",
RowBox[{"q", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}]}],
RowBox[{"a", "-", "q"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "q"}], " ", "ys"}], "-",
RowBox[{"a", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}], "+",
RowBox[{"q", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}]}],
RowBox[{"a", "-", "q"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{"q", " ", "ys"}], "-",
RowBox[{"a", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+", "q"}], ")"}], "2"]]}]]}], "-",
RowBox[{"q", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+", "q"}], ")"}], "2"]]}]]}]}],
RowBox[{"a", "+", "q"}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "\[Rule]",
FractionBox[
RowBox[{
RowBox[{"q", " ", "ys"}], "+",
RowBox[{"a", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+", "q"}], ")"}], "2"]]}]]}], "+",
RowBox[{"q", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+", "q"}], ")"}], "2"]]}]]}]}],
RowBox[{"a", "+", "q"}]]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.768224509812764*^9,
3.768225011237505*^9},ExpressionUUID->"406e2520-2cde-448d-88a8-\
6587fb24c501"]
}, Open ]],
Cell[BoxData[
RowBox[{"(*", " ",
RowBox[{"Solution", " ", "number", " ", "1"}], " ", "*)"}]], "Input",Express\
ionUUID->"ac1565f5-0ea4-4916-bb67-ad6223cc633d"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"D", "[",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "q"}], " ", "ys"}], "+",
RowBox[{"a", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}], "-",
RowBox[{"q", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}]}],
RowBox[{"a", "-", "q"}]], ",", "t"}], "]"}], "//",
"FullSimplify"}]], "Input",
CellChangeTimes->{{3.7682260396606913`*^9,
3.7682260433833923`*^9}},ExpressionUUID->"601c707d-020e-49a1-bfec-\
951bf9c8e474"],
Cell[BoxData[
FractionBox["t",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]]], "Output",
CellChangeTimes->{3.768226036544341*^9,
3.768226094721815*^9},ExpressionUUID->"73ec9aae-eefa-4158-9689-\
bef1e6f21bd2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Block", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"y2", ",", "dy", ",", "py"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y2", "[",
RowBox[{"t_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "q"}], " ", "ys"}], "+",
RowBox[{"a", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}], "-",
RowBox[{"q", " ",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]}]}],
RowBox[{"a", "-", "q"}]]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
FractionBox["t",
SqrtBox[
RowBox[{
SuperscriptBox["t", "2"], "+",
FractionBox[
RowBox[{
SuperscriptBox["a", "2"], " ",
SuperscriptBox["ys", "2"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "-", "q"}], ")"}], "2"]]}]]]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"py", "[",
RowBox[{"t1_", ",", "a_", ",", "ys_", ",", "q_"}], "]"}], ":=",
RowBox[{
RowBox[{"a", "/",
RowBox[{"y2", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}]}], "*",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{
RowBox[{"dy", "[",
RowBox[{"t1", ",", "a", ",", "ys", ",", "q"}], "]"}], "^", "2"}]}],
"]"}]}]}]}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "05", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "10", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "15", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "y"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "05", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "10", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "15", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"t", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[", "\[IndentingNewLine]",
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "05", ",", "0.32"}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "05", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "10", ",", "0.32"}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "10", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ListLinePlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"y2", "[",
RowBox[{"i", ",", "1", ",", "15", ",", "0.32"}], "]"}], ",",
RowBox[{"py", "[",
RowBox[{"i", ",", "1", ",", "15", ",", "0.32"}], "]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",", "20", ",", "0.05"}], "}"}]}], "]"}],
",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"y", ",", "py"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Green"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]", "]"}], ";"}]}], "\[IndentingNewLine]",
"]"}]], "Input",
CellChangeTimes->{
3.768225693552536*^9, {3.768225884939062*^9, 3.768225941243465*^9}, {
3.768226107524678*^9, 3.768226165825839*^9}, {3.768226294497385*^9,
3.768226295952194*^9}, {3.7682263525743113`*^9, 3.7682263827365294`*^9}, {
3.7682264663347282`*^9,
3.768226495206081*^9}},ExpressionUUID->"a7331946-02cb-4944-94d2-\
6d52516aa801"],
Cell[CellGroupData[{
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011111111111111112`], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJw91nk4lfn/x/EjhbLvju1wHOdw9qVMJd2vFFpM2vfdkqQiKTUlZaZoN23D
pDSFFoq0TVpMi0YYaSUlNZNWqlGj0PiZb+/P7/7Due7L5/P4PO/3dc65jvuc
RWPCu/F4vDQ9Hu+/V3bp/e+vDTLS/7sOc6a8Wdvk/3//K3f8+SvuRNd9b91/
1xUu5NSTnml67P9l3J3x0xp/72aDr9pNLtN4xI3J3dn621xgWELuYAMbzI34
77rHBZzfGL3OiO2v5XJDTHoIjW1QWfHf9ZAbdC9ssp0Z8xq4Pkeejwy1ZOuf
cM+W3r5uZMv8P7nVCycdMOCz/X9xbfp7L0xzYec1ct9Iyt72EjLvBXePp29h
KWHeS65OmvR+oZx5r7m00JQwkZZ5b7jBZxJ9NH2Z18w1u7zS7BzIvHfc4NRE
11EBbP07rmym+LfZwcx/z9nPNnlYNpbt/5u78DZbmTKVndfC/XH+QvyeUOZ9
4NpvJs43iGbeB27B29XXry1h3kfu9rdVAx+sYt4/XGnmv8mD1zOvlXs0RxWk
l8a8T9z0NIGP9c/M+8Q9ifHpSMhm3mcu92Kav7aAeW2cobF1wcBi5rVzm79d
8DKzlHkdHHdUmxZyi3kdXHrU06Cx9cz7whVbtB499Ip5/3IzDnyYHNLKvE7O
1njZm8DutuTxkJ+Gji2WtrSeh54JQ90kAlvyeVixr6zJTGGL/23X6aGP/+hP
Ab62dJ4eGk9XVpcPY143CHwze2VNYl43NJXs0Vyey7xumF7sc0ezzJZ69LGu
MTaxeR3z9NFuwCtu3cW87kjJDLb+Npd53dF340bz5jPM647rv1z3efA783rg
mcd7M8sHzOsBP5c3zj++Zp4Bwk/s/WvaF+YZYJt/54sYczvyDLBogTCv0t2O
PEP81DL0+OLeduQZ4sqipsUzg+zIM8LFxuql26fYkWeEzTLT/mYLmWeEWlsH
36o1zOuJ+JQHrXd3Mq8nVIFnm9yPMK8XVNsz009cZF4vDNxvnLD+NvN6YeE1
UY+sF8wzxsX4s+fbvzDPGJtNQxwzrO3JM8GuiX3SV3jbk2eCRQ/Xn9zD2ZNn
ghsf/J53jrcnzxQz9/bOOxBtT54pzK37Ja5PZp4ZEtyta45kMM8MWwK39jY9
wTwz3FifYnasjHnmyDL9u2HTE+aZwyCxQXz4M/Ms8I/d9qndrBzo/WWB8ykr
23ZLHci3QP9tI1bPG+xA+y0wYHRL+NJpDnSeBdpjiqQX4x3Is4Tze8FwbGWe
JWLLvQZ1HGKeJYxC3De/v8w8S5wZeP2o4BHzLNFUOMxpXSvzrOB+NmSKyIpP
nhVyL/37/LOcT54V5pfwhhgM5ZNnhTmyDc1DQ/nkWWHxvpmRvyXyybPG2rA6
7aIMPs3HGmn5f1eNPs08axT90v9y5C3mWeOOrmlTUTPzrGF/qqlIY+xIng2e
BFQWP5U4kmeDmfpV3qVDHMmzwT7DN8l1sx3Js4HS5/4o4WpH8myguM9zyNjD
PFv07JYx2/8c82xxsGb3acca5tliwI7TWcJ/mGeLR2Erj0y2cSLPFr+IBsy8
pHUizw7rH9uPGDvaiTw7DNfot9vEOJFnh9fLr3Xob3Uizw541V4vOMY8O0TM
c9JEVjLPHr7jFic/fMM8ezTbS+euNHEmzx5rDw1dGCR3Js8eO+8UyvyCncmz
h3yZl256tDN5DtidEsLP3eRMngM2mh+Nc8xnngNGtWTVnK5kngNeHl/++Ltm
5jkgvmmW2zxzF/L4mNEe3jtR7UIeH+vUK0+dG+1CHh/jNN8NdI1zIY+Pec6C
+Yd2uJDHR+deo5pJp5nniIr354WqGuY5Qn0p+6W0jXmO2NdiUTHC2ZU8Rzgt
V0elDXQlzxEz6vnh7bNcyXPClVfXZqQmu5LnhB8EFm39c1zJcwJfcvqBeRnz
nBCvm5ht+IZ5Tvg0Iq7T3VxAnjOSNkZtnaEVkOeMvJCVHefHC8hzRvrk0uYB
ywXkOcP1yWDz+j0C8pxRnVFhmFXCPBdcLbROXvsX81yQO2XsLv/ubuS5oM5v
ac1YOzfyXGD+Ja1+iZcbeS5QpBauzu7vRp4r9h4dvv1ZsBt5rngQ6ve+90zm
uaIKt2O3xzLPFa6nLzbxvmeeK44tcBy4ahfzBNi7M3KA0WHmCfBa+uPl/cXM
E+BvNB4Z9gfzBDAL5N/sbGCeAD8EDDG92sI8NzSJ//LbZeD+dT3fDQGva/yW
8t3p+8YNjc/DXobK3b/u73qO1E6Zy0zOnc5zQ0Kt9vTcMe5fvSQ3iO3r01aF
k5fuhjEp7zdnJZBX5Ia707em3NxIXoUbgqd+M8t0H3mNbjhlWNoy4QR5PHeo
HsUJ86+xPne0L7tTbl7L+txRffVuVeIb1ueOEuUls7ZO1ueOgxXqeWushdTn
juFbhCU2EiH1uWPNvD8/FPUXUl+Xv87h5YyRQupzx8hF5xNt5wipzx16fV1/
uh9PHk+ImoIG++xU8vhCLEr73LAqkzydEJrcgnuzC8kLFuKS/r6Ho66RFyHE
C9mxe8NrWZ8QPkH2h0OaWJ8QylFz+s7U86A+IbiA8HnLbT2oT4jUKYPd93p7
UJ8QS+XRAZV+HtTnAf+WjGKDMR7U54HvztydNzzCg94/HlixPtrnpxXkBXvg
ff4nw3dbyOtal/ly6rXRB8hL8oBhzqXxF86Ql+6BDX12ZGkryCvywA8m2zYX
NrA+D9z+cqx7/4+szwNbEzTN5T1F1CeC4PrP2rmuIuoTdX1+T50z1omoT4Rn
d9cv+jVIRH0i9Lk4o3/MNBH1iTBnTGl3dSx5SSLsMdx49tMP5KWL0KP0LHcj
g7wiEU5qMr4/eJy8ChG0H8/Err9KXqMI601r3i+uZX2eOG//5W1EM+vzROu+
8Imh+p7U5wmnxRutIx08qc8TH18LLeIVntTnCcPRjv02+HtSnyeqBekrcid6
Up8nrkd2llREk1fUdS9+9unzGvIqPKFJ55urdpPX6InMfb+8m59HHk8MO/vz
Gwp+I48vhl6/+zc67rE+Mba1p+8d9Yb1iXE3rr7lqJ6Y+sSY3+/EWTN7MfWJ
cbJ8fF2CXEx9Ypz65Dv81SAx9YnxXUDPD3MmiqlPDOmk7defRpPXKMbm0Iai
eWvJ40ngv0N8qHU3eXwJlq8u374pnzydBL7bQyO8rpAXLEFQSqF5eQ3rkyDx
bvbqJc2sT4Ibohk5ou4S6pPglzLRkrou92ufBPr9Ymp/UkmoT4K2tU9LpwVI
qE+Cw5VDFZKpEurzQnl1xpfWGPL4Xrg4qc2rah15Oi90FJ/IyttDXrAXTCL6
Tth2grwIL+iN9/Jd8Tt5SV4YuDdoUFQ96/NCXcvaKbM+sD4vjJU1J0zr5UV9
Xjh27cqWGW5e1OcF8+VhWyJ8vKjPG1nFE6KWdJ37tc8bLSGBtilzvKjPG+m3
9NfuTyAv2BvBw74/ULKFvAhv+Bc1RD87SF6SN55ljK82LyYv3RvvDvlf5arJ
K/LG6b7SfvHPWZ83apsKPAq+sD5vKEdkLntn7U19Uvwz/L6Xj9Sb+qSY9mmu
bA28qU8K517L46oneFOfFN8njvsoXuBNfVL83Dcse00yeUlSrNyrSXiSTl66
FM19w+cEFpBXJIVwXOmkglLyKqQ4tL//KMEj8hqlSKq75re9hfXJMD4y1c6k
l5T6ZHjCu1qV6ialPhnCJ1TPMPlGSn0yBJ3z/nX7t1Lqk+F66ew7gjAp9cnw
m5E0p2AFeekybDoyUhSYRl6RDK8EZ4Y05JJXIUPrrfAviRfJa5RBeWvZEOFd
8nhyLF4tsrjxmvXJ4YwLE5Z2k1GfHB2KfDNJV/fXPjnmlSUoH6pk1CfH0LwL
eTsDZdTXtd5PmzR2uoz65AiNzN5nu4S8Ijlyvv1X7+EG8irksOn03Zuzn7xG
Of7qHT8//ix5PAUuG9TMGlpFHl+BZdmH4wWNrE8BX9vA/W0drE8Bh5eCulpr
OfUpYNZ5yfGCVE59Cgj9rk08OEhOfQqoQ/5K3TpJTn0KFIQ/P5S4SE59Cvh8
zM+LXUdeowJVS+WbIzPJ4ykh9Y72Dz1JHl+J1Fsbrs4uJ0+nRFLyOeOwp+QF
KzFvyiCLqM+sT4myoOU34iwU1KeE/HaVdo1EQX1K2D25NujHgQrqUyJq+du3
OeMV1KfEkS0tfS5FK6hPiY/XNprUJZPHU+EQ9310WwZ5fBUuzyoe6XKCPJ0K
L/a45w0uIy9YBcmgX1ctaCAvQoUJ3K7zGa2sTwVN26PZ5WZK6lPB1Op6RKen
kvpU0GnTr/r4KalPhdf1eUtixympTwXhkPkxx+crqU+NjO4jC9+tpfUmarzo
+VjdJ4N8vhq3xp19sbKQ9ovVSPoj+db135X0+0YNU8f257YN5EGNRxHPhXNb
yQtWI2qw+6piM9VXb7IauTHb3lmJVfR8arSeki1b4Kf66sWpUXjqU6/ycSp6
XjXUl41zZNGqr94mNeYXrfffmkxeuhrGFzIffMwgL0cN14DNkTNPkFekBooP
NJaXkVeiRkDMgBDfJ+RVqBG+sGRP/ifyatVo87odZmmkpnmpMdiyX2Sltfqr
16LG0F0P7m4QqGl+GlQ3GRwdJlPT/DSIv2H9rOc3apqfBqJh09eU+5Mn1uBj
fcCqLSPJ02lgH+Rzb8wU8qCBRWxmqkMEecEayBa92/E4lrzJGjiHH/mYu4q8
CA3+XBp8ODaVvDgNHp+Znj9gJ3lJGlg5zu802k/eJg0Kpxtm3ssjL12Di7zy
5Oyz5OVoYKQaVxh/lbwiDVQnAj2CbpJXokGPpyPu8x+SV6FByw6r8qbn5NVq
cMEipONyC5ufBqPbz0Wmd7L5aVA7wtYs1lhD89PiX1/hq2H2GpqfFkP7HW3z
8NDQ/LS4eC/Rr1OpoflpkXsxpqCuv4bmp8V3ByeP/jWQPGhh/I29609jyAvu
2m+1ySZhBnmTteh5cp92chR5EVqYRw1c6ruUvDgtwoZNfuS6lrwkLYwEjeH6
W8jbpEVc6GPTl+nkpWtRrxhyuyqbvBwtDkscTp4pJK9Ii7erQ49lXSCvRAuf
x9qSDWXkVWgxeuru5/F3yavVYtr8HOGcJ+Q1avG0bvmikCbyWrTQXlFV+H1m
89PhcvwrH0UPLc1Ph9IVN/NdLLU0Px1eJJmozF20ND8dnMdWntXz1tL3jw57
KgOGfeytpfnp0O12Xv1LkBesQ+ogv2WPg8mbrEPUiz6W9yaRF6HD2FW1RyrD
yIvTwfrHhf6lMeQl6RC0gbt3aSV5m3QYkZYRdi6FvHQdhNuqX5/aQV5OV49H
/6gTWeQV6bDpR0X98TzySnSwv2oUeOwseRU69PGRZ+VfJa9WB+WH9lf5N8lr
1GHC5sei4w/Ja9Gh3Ng/uPAFebzemPY6bebJD1r8HzO2xNU=
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[1, 0, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw91nlcTfkfx/Fok/ZNi+q23qXu7W5pTNR5T0qhkbJGhFIiChOFKTQKCVkn
SzVj7MsgxUxpQYhMjC0h2UorqbFU9GvG9/M7f9TjPDrneV69u93HtZsdGzyn
v4qKSmY/FZV/v9PR77+vjtid9e9xhEufYOOo/f/zPzhdlZlbxH3nbsp/j0tc
hG6iT8T/f17B/d7QxJ3pO/+q3eJ0ZqqtGdSPrr/DBeY/08rsO4+K/Pe4zyE7
5r5df7r/IXd3Ymj9tb7zm5X/Ho+5O0eGDE1VJa+O26c95nqIGl3/jBPtL9o9
Qp38F9zIiIRDIzTo/pfcZyePthBNel4951uUHpM6gLzXXKFxOa9Ci7xG7lCg
jrq9NnnNnHXTRItMHfJauO/uR4QM0iOvjSv87XrZaX3y3nJDjjaMDTek699y
6sLmHmdj8tu5V0vvXB1gSve/4y4oFx7rGUTP6+CSF07Zr2FBXien/ujLUf5g
8jq5LtXsC6HW5P3D/ZHsff8wj7z33DeCijcD7cn7wF0a+1QtxZG8j9x9FVUD
QwF5H7ljHina+SLyPnGPnFe1LxST18UVLmou9JKS181lhq+LcFSQ18OdDmh5
yRtCXg834lySu3woeZ+5F2cSg6cMI+8L12bdJN/hRV4vl/L295sN35GnghHr
k2zG+dL1Ksjpfmz1lz/5KqgI45fNCnDEf7cr+yHAcYOq9jh6Xj+YzdJ5XDGe
vP6QiVO9syeT1x8X3hxwXTeNvP7IL3uzKy2MelTxV9GF+L3h5KmibSpKrkSR
p4buW0nzNWLIU0PX/MmLpsWRp4YFb5Kvlv9AnjoG/bM2wjeRPHXc+b7Kq+ZH
8jRwO3x3wE9ryNPAlX1fUkakkaeBWZdaasw2kqeJJ7Olfv0yydNEyjfzi3t3
kDcA0zN57sZ7yBuAkgsH9w/LJW8AnsW59yQcIE8LkbI6txtHydPCoeJMb8Up
8gZCN83U8mQ+eQOhqW18yquQvIFoDtT/9KKUPG1kfL+gcd8V8rSRNn1hfEwl
eTrgjikyA/8mTwcJv/0h86smTwdZ8577ja8lTxcrfGKuL3lJni4KDT4cO9xE
nh5yzqvWtb8lTw8z9neGBH4gTw8NIj3dss/k6cNUe1nLSDUn5ulDVDe0uW6g
E/MMcCITPZsMndjrywDHK2cYBZk7Md8AWgn+tgIe3W+AYOdd5oZ8J/Y8AyzP
qWjVk5BnCE2pz1ZbN/IMMcQ76KPvMPIM4XvdzijZmzxD1BfcvH1jFHmG2Bkz
QSQOIs8IvGH7BuZOIc8IA+8uixLMJM8IraV75RejyDPC3w9PTI2LJc8I0wvd
78qXkWeMd8NPbNZIdmL7GCO1flFSWyp5xoiPvJXZuIk8Y3RrqBR+2EmeMZIc
HJvNc8gzwbp9AcbfHyLPBGlBSx23/06eCYamp+u3nSPPBDmJEeVTS8kzwdVf
r7rXXCPPFDqT502IuU2eKV45tOsZ1pBnivkj30669pw8U3hat1htbSbPFOq7
Q4IWdpI3CHPOZL8M/UzeICy6ZXR1ugafeYOwxbv3dZw+n3mDUHY0x2OnOZ95
gxC7wP74TTs+88wQyzsiMXPhM88MP3f4/77YjTwzrBZo29V5kmeGS7Gti8P8
yDPDvPDn29+OI88cxfW3l26bSp45pu3IGuAfQZ45Mlx0PfQWkmeOB23vu14t
I88cD03Nh1WtJs8Ck6Wipop08iwQv67mw70d5FnAa+vd8R055FlAOvJ8q91R
8ixgv4GXP+sseZaQbtuXdaaYPEs88CvZYFJBniW8ftFOSLtDniU2aasFadeS
Z4mF5Y7qua/JG4zfvF6l+HaQNxjF8eeLuj+TNxi1E3RzLg4QMG8wMnQDLXcb
C5g3GOeXvLJeYyNgnhV2Th6StVwkYJ4VrtfmrkhxEzDPCrGP087u5cizgo/Q
X3llNHl913d6NvROJM8amx0vl4yaRZ41wrLdju+PIc8aa3Jf79FNIM8a+sbf
JqWlkGcN+cMkb8PN5Nkgwc64+uhu8mwgyg90nXCQPBtsGrnZTfcMeTYILpbU
3LtAng2up63TO1lBHg/Bj7+U7rhHHg+5uu/qNj4jjweDqvLp21rJ40EjqY5/
5BN5PAyJPubyl7qQebZ4P2jbtP5Gwq/XW9hizwbNg742QvZ+Y4uidSu7djkL
v94fYIstNdH+n9yF7Hm28NgyJjl6BPNW2cLG+9dNrwOZl2WL4UEdc5aGMi/P
FvH8ik6jaOZV2qI7Ls+5OJ559bbICvf7sGwN9dnBqp03Gpupzw7nNWuNzPZS
nx0W3RB+13OY+uywqerE5Tf51GeHAYF2Ge0Xqc8O5hFeG/rdoj47nPO6eoz3
hPrs4DF17bMxTdRnh9bTowanfqA+O5R3tvj/pSZiffawOx841dFIxPrskXFk
KreOJ2J99jhU8qXhk1jE+uyhP2+IT6KHiPXZY36pio+GP/NW2WPlqfkPcicy
L8ses102tPmHMy/PHjeCEhO/xDGv0h6Lc8LmliUxr94eW00XHMvcSH0OWBPx
SBG7m/ockGLS1hZyWMRePw7IPPGuKqiA+hwwrxZXJl2mPgfk/epxce7f1OeA
4LkBZ9PqqM8Bd5WtG/PamJfnAPPL2cNbeqjPAWb5rXlybWfW54DGXxa9SLFw
Zn2OeOZ7s/C5wJn1OaJr70nJWHdn1ueIMNUq0RUfZ9bniCETOnJHj2depCNy
NFtSHs1i3ipHtAfuuJQQx7wsR7i6Pxhnn8y8PEeczj9gVZ3BvL7PKZIHKua7
91KfI55e71TOPUZ9TtDqv3uW95/U54TjfqZbhRXU54TfqncVWFZTnxMaloeV
mjdQnxOGby/ItX9PfU4wQaf/UHUX1ueEJxErj4aYuLA+J+y8VlKQ6uDC+pzw
q+PwsBKFC+tzguO3K3eoeruwPj7SnpqNGR/EPAs+kq3OLjo5k3lKPkbLVbtN
4pgXwEf88cvVqcnMi+SjObG8R3Uz81bxMevd0ykbs6mPDzR11/JOUh8fTSV6
q4svUB8fkdGD5XNvUh8fy1crnlk9oT4Bhk1YnPK4hfoE0GzWGHioh/oEaDNz
jlqpI2Z9AmxZ5ZARaiVmfQKsOey/0E8sZn0CGHb39AwfLmZ9Auy4e9rFM0DM
+gRwT69v8QtlXqUA4mVC5fQY5tULsKnLqH3lSuapCLFrXaDFoY3MsxAi9viO
7Ed7macUIl3/2BLLE9QnxPLk8PTwC9QnxLiO3OqCm9QnxJ4t48ea1FKfEI2/
Jz5d0UZ9Qlyv4yW3fqE+IeJbZ9pG60tYnxAGtXMK2ngS1ifCjO45bkkyCesT
4dvbBzPMvpOwPhFSZSvz/wySsD4RymX+OVGzmRcpwgT5Ci+bJcxbJYK4Zltq
bQrzskSItuLNP7ydeXkijFGcf7riAPMqRejNHlA9pYD6RHgruebHXaU+Z1S2
F9lLq6nPGcNGFIYKG6nPGbKSA43OXdTnjHqfBRfctV1ZnzNyOgwqx1i5sr6+
/xNhttY8iSvrc8bgRNm8TC9X1tfn57c/Kwt0ZX3OmFFrMad7JvPqnTGZ/6bB
czHzVFxwqal8xvoU5lm44OdTKsVPtjNP6YK1PIMuj4PMC3DBl57Fmr+coz4X
WAgKavQrqM8FGpt/mJtWQ30uiFdOPqDZQn19r3NL09Qtn6nPBR/HLOm105ey
PheoX/fRKLKVsj4xVqXP2zxDIWV9YmT8cGezlo+U9YlxPHBlT9FEKesTY9KV
2OsJUcyLFCMr5Erb8ETmrRJj1NSDM7TSmZclhs2zEfq1e5mXJ0bulbp//jzJ
vEoxbu+u1MwtpT4xivdGeGT8TX0SXD5tnLLmJfVJcCs0+EHye+qT4NDU8Tu9
1WSsT4J+0uDho3RlrE+CR55Lq8cPkrE+CR7c2zlnNk/G+iTQ/5xZ+4NQxvok
sIoJ8EqXM69SAsn608kHPJhXL0HX7Lx9l0YwT8UV2cdGb3sVwDwLVyzNWzpN
exLzlK6oCfdsdwujvr7zb48Fzp5Lfa6owp1F2xZRX9/fWbcq+Npy6nOFTUFx
q8pP1OeKP25f8/TMoD5XnFxg6fXjTupzRdLAhsbSHOqTInvH3OEDjlCfFIXh
T2Xjz1CfFM3OWy/+Ukh9UjzpudnScZn6pHiH+qOj/qI+KSafdPv46wPqk0Jv
pMWt3jrqk6IxoEsys4n6pFjr66N7uYP6pPimKTra5TP1ydDKf+m5U0P+9Xod
GXSMFalqBnLWK4Nvc7XnUgv51/v5MoRoR8xstpezzzcy1DdENIaL5V89yGA7
YMndp0OY1/d3Wd/rYh3GMS9Ehj1RypJn/syLlCHhoaIgKph5S2TY0PDw89tp
zFslA9+sNvPHOczbKINVTdcC3VjmZckQvK49IzeBeQdlGB+yvtV9DfPyZLg3
ffO6W+nMK5XBL/H+1AU7mFcpQ8C0b2bq5jDvoQzfJW7Zfuow8+plyNe80jHp
DPP6dnzZUZaoUsQ8FTmkT5bYnyin/eTYqHe7MbSK9pOje9ndG/oPaT853h1K
ulz+nPaT4/ble1VJLbSfHH6prxo93tN+cpS6luh19dJ+ctz9KdGjSEvB9pPj
t0pZ9GpjBdtPjoAyjV2jrBVsPzlGb7IvNREo2H5y1F07VfdcpmD7ybE6+kVn
ngfzDvZ1lbd/TPNhXl5ff6p544yxzCvt6zuSVTZ0CvMq5RgbW5RkOpt5fb/n
2hk3rf6Zz7x6OfoNtfn5QTzzOuSob1dvLUpmnooC1afqzA6sZ56OAuFl+qZb
tjHPQoHYzE91P+5jHl+BgiNaCQsPMU+pgPzQqfuzTjMPCmxzi/g0uZB5AQqU
qOY8HlfOvBAF/K7WrQyoov0UeO1y8v7oh7SfAhp/b6kf84L2U8Ddz+xIYCvt
p8DF3ruWkz7Qfgq4jps9NKyfku2nwI3I0C/ztJVsPwU43znRiaZKtp8Cdn86
LN3AU7L9FFg/dYRdtkjJ9lPg6Iofos4qmVevwFJxjO9NT+Z1KPCN9OW5137M
U1HCu2N3oUYw83SUyNw0/ntBKPMslFhx7l706Ejm8ZWILG7VjYtTsvcfJZan
xbj/vJx5UCL0J0HdxZ+YF6BE+4mPmm83MS9ECfuk4qO8LOb1ufsap5UH7Wfe
EiVOhpyfkHqCeauU0DxYMvHCOeZtVCJHb3b5+zLm9TkbhmzPVVTSfko8NA98
GXefeXlKrNXZknG6jvZTYuLZKVmdTbSfEnc+n1Tz+If2UwKW+ypX99J+SmxO
kLfd0HL76nUoEVGSFGlu4sb2cwPv6h5FlI0b/geS+Mvl
"]]}}, {}, {}, {}, {}}, {{}, {{}, {},
{RGBColor[0, 1, 0], PointSize[0.011111111111111112`], AbsoluteThickness[
1.6], LineBox[CompressedData["
1:eJw91nk8Vfkfx3FkT5bs+3Lty10xbTrvNNJiLDVkGUm2srRvtGq0aEMjjTZR
VJSSoWzVjGIqCm20mJRBpR0p9etnfr/vZ84fPO7DOc/zuu+Hx7nXfN6imVEy
UlJSGdJSUv/8pkP6fz/52J/9z3GSu+Ifm6Dw7+sKLuJebpnx8GtnyT9HLacl
ld7q/u/fr3Hevmr3Vg6//r/WxO3//uXpin/Pv81tDXkSNlKaj5jof457nJbO
wZdx0nR9G+f2qdr34fDrxoZ/jkfcQFrL7iAZ8p5wIQmh+V0ydH4HJxbc+mXT
CPKfcdUbtwc5ydL1nVyz8bP+Llm6Xxc39p7x/DNy5PVwcRmLz2yRJ+85t2Km
zI14BfJecjMnvKwIVySvl4vOcl4TpUTeay68uXXUamXy3nLRO2sXZ4+k899y
Mfub866pkP+Oe6HQnKeoSte/54bMkhcFqNH9PnBrV+1RKFUnr4879bxggclo
8vo4+ZN+mb9qktfPzZuku8Vcm7wBzudIgluFDnkfuRaj6gtheuQNcr4bQga0
DMgb5BqVsvpaDcn7xK3ceLykyJi8z1yguMZhlyl5Q9x6mYG568zJ+8KNXTLP
Zy2PvC/cpXzZ/lQr8r5yn1Y1+RTYkPcfrjypKLTZjrxvXL9cgtFIR/KkcHhS
e+osPp0vhVBh5dFCIflSuF15OkZdwsf/LpdI42Pl7NspLnQ/aVxTmNapMIY8
GXDJsr9mjyNPBhFG316OdSNPBk1vch73cNQzAtOA2AJ38kagZJdD2lIP8mRh
cSRn2g9TyZNF8N6GLNcZ5MnC9/WdZXxv8uSgdajxsbMfeXLoHn2xedqP5Mlj
vfcRr4TZ5Mnj2Iu5M3KCyZPHU8e/rv8VSp4C0rVe1fPDyVPAlwU+3M5I8hTR
3VjjNBhDniLUrj1NWxpHniIMH4XMG1pInhJOp1Xk7llKnhL2pGyYPmYlecrw
TLEM6k0kTxm5GaOvF68jTxnFnwqyNySTNxIVkeIrczaTNxIHuwc9vFLJU4G1
tthw6i7yVFCtpoSZGeSpQHzg4NnYveSNwlX+t/kZ2eSNgofCd1F1h8hTReLY
iblKeeSpIuuKjH5IAXmqkMmP/rOykDw18Lq5Itsz5KkhtjKw5lgpeerYlrLo
M/8C/X+po6rPdU59NfnqCNMN6Ez4na5XR9KC+dss6uh+6sjv/erx93XyNDAw
7oBe+S3yNKB4oGIo8w55GpiuVf8iuY08Dfj/bN2xtp08DUQWCx5sfkbeaKgE
C5oP9pA3Gp2hMb///oq80VhToVrQ95680Zh50i/JZZC80fhc5Tc25St5mgjq
tmp/IiNg+2jiy6EHETMUBczTREbnkqu1owTM08TPMc++TtMUME8TqelGiu16
AuZpIeug1F8bTMjTws6S+esEluRpwa+P195rR54W7h7+OHReQJ4WnHRymtNd
yNPGY6mGoFXjydOGdqh1Wtwk8rRhuc8rPsGTPG105tx+ufYH8rThM8JTcf8s
8nSg/M22+koQeTrQz34v/TWMPB3kl2vecY8mTwdnxB8cs+LJ08HI/tfyH5eS
pws7pZ9+ikokTxfGZVtsOjaQp4uc9HPzYreQpwvdgwaK0rvI00XJ7Hca+b+Q
p4fND+YmBewnTw9Xn28fr51Lnh4+qKX6dBwnTw+qv8WfrSwmTw/9Qi4wt4w8
fezulZ60t5o8fbgsKo7MqiVPH7JrXGuOXSdPHw68lO8vN5OnD+9niX09reQZ
YKD8fZ3JE/IM0Cb8oyy8mzwDBO75rbLkNXkGuPl09y3VAfIMoKKg9nr1V/IM
Mbu3X2G1jJB5hqg9HKs7Tl7IPEOsNR2XJ6MsZJ4hStJd8ptHCZlniMoae+Pj
GkLmGeFP6075n7XJM8IWFbuwKH3yjHBjTY2FtzF5RhgXNM/bzZw8IzyLv9su
tiLPGJ0JzU18O/KMIa2qai5yIs8YbnJoGCsizxgxxvq3prqQZ4xit6nWc8aS
ZwLLlYk3E93IM8GUkQFXDkwizwTLklNkr3iQZ4IFJ07seD+NPBOUF0QE2HiT
Zwqe3I/h82aSZwqdSu2TRwPIM8UHZ3f7l8HkmWLJgsUdY8LIM0XvA+cbOyPI
M0P+cfPOrhh2vr4ZVDLrbD3jhex5Y4Y32iV7Ty9m13uZoTAs3sZgBd3PDH5x
yQ92JjJvoxka5FYVya2n+5uhq605K2UT80rNMHeNVrbSVuoxw8sll4ozdzCv
ywzm3/vdsUqnPnOs2DRFviaT+swxukV/UnA29ZnjwsfJyV8PUZ85Nj0dX1uQ
R33mKClfOSLgOPWZI7Q1ZuLIU9RnDuuBjYvrzlKfOVo0xVlby6jPHM8ynxd5
V1KfOUw9tYoNL1GfBVQSjLNf11KfBeL+XLig/k/qs0DqscWGBY3UZ4GTT1KL
trdQnwU8PpvqrLhPfRbw0d03O+oR9VkgQn1mfEgH9VmgJ+mc7+wu6rOAbame
dNBL6rNAYNezxLlvqY+HvUZLzyf0Ux8Pje5m5Rs/0/8PD0edpy/N/kZ9PIyv
m95zXlbE+niQvblG65GSiPXxEMF3/SCnJmJ9PIT91bzRRUv0f6+UhzGD+RWx
+iLWx8PrC4r7802Y18VD1S8+Jl085klZYo3rLXdHO+bpW0Ij8+GI1XzmSSxx
7FV96DUJ87ws8eJhl5fZWOqzhHfg9sa1E6nPEup1Ix61T6Y+S8weOrp8yjTq
s4T99KpfSr2pzxLzUrNdrH+kPktsN94dcDiI+qxwRrrnvWEY9VnBpKlfPieS
+qygfkMuzSaW+qww6++orWWLqM8Kt65H9E5dQX1WUH7uVdmRRH1W2Ldq4asN
G6nPCos2am/ibaE+K0zt2b28YQf1WaFupc3vSRnUZ42ydodI/j7qs4ZRXU9Q
90Hqs8b0m4WH8/Oozxp3D1zkLzhBfdZIbl8sLy6mPmvoB6laSP1GfdYY//zZ
utsV1GcNtbSJOqcuUZ81XiyP6069Sn3WeDVw/lX8DeqzQXLhEiv/Zuqzwf2o
ru3u96nPBpxnpIHLY+qzwdbqsU2Oz6jPBq7by07YPac+G1xssT7i8Ib6bJBv
/PicuJ/6bJAyx/bxxCHqs4HWl0BDX2kx67OB3v1LC6IVxKzPFmP8iq8kjxKz
Pls0zlppm6cpZn22yAmIzajXF7M+W+yMfjz0zpR50bbgOfIiza2Zt9EWgvdp
df6OzMu2hf2p1aZpYuaV2uLEF3Fc4xjmNdiiaLx2gTpHfbboXbuyIdCD+uyg
nFX8IH8G9dmhzFKn8aMf9dmhOlP+iHcg9dlB0/qBT+Ec6rPD1fcvW5WjqM8O
t/v2fbc4jvrsMEpl/PwHS6jPDvUjJDHTVlOfHTJ/bRfWrKc+Ozxdd+h3l83U
Z4+tEU3apTuozx4eQ612Lnuozx7f/Uf/c9Wv1GcPofjjJs8c6rOH0qK7l+/n
U589Oo4anI0/RX328Hrk9IN8KfXZY4nHqsxjFdRnD13J3E2el6nPHsctZ2m+
qaM+B+hdr5p8oJH6HHBHUUHd6w71OWCD1NHl0g+pzwE1at8SqjqozwFPW3cM
JvZQnwPSp1Spu72hPgd4p0uVyg5QnwNkuaaHTV+ozwELRUe25o6QsD4HbDvS
fW6lsoT1OaKVZxrsqyFhfY6oLLucyNeTsD5H7D3vqaphKmF9jvjWL9QatGJe
tCMenvq89Zkj8zY6InyHZfRtCfOyHaF9QVBUP455pcP+ncOzLk9iXoMjHGUG
QmqmUp8jBJ2Vly/6UJ8TnPOXr78SQH1OkP9clHEzlPqcsMLq5cCjSOpzwt9D
NYVv4qjPCe1dJSfll1GfEzb1+L81T6I+J3w6PG7NpGTqc0Kz5/spUduozwk+
teq+u9Kozwnn9jn8UpFFfXzM72tTeXGI+vgYU/ZbhUk+9fERHBWQNfsU9fGx
xT0kJ7OU+vgY5MKb71ZS3/D5Sop2hn9QHx/lcu/yIq9RHx8ewZfGn2uiPj7w
SvftiFbq4yN3fm510F/UJ0DLBNnDpV3UJ4D/0RfpGq+pT4DwXKk9y/qpT4A4
5b5DbV+oT4ATm5aXTJZ1Zn0CbE6WXCsZ6cz6BBj5Y2cHT9OZ9QngbjphMNvA
mfUJkPj0naKWhTPrEyAr8aL6HjvmSQnxfc5PKloidr6KEA5vtg1mj2H+8Pdo
pR7pFh7Y9dZC3Hq1dW+JpzP7fiNEwYzH3GQf5kGIjy51ja0BzPMSYnaD4oSl
c5gXJMRqw4StatHMix7+nmJac+psAvOWCRFee+WE/wp6v0Ic6/Zb/Z+1zNsp
BC/MWa8ohd6/EOM+uG0O2cm8AiEGIt2r1TKZVyrE2YW6lfUHmHdZiLyrmWt+
Pkr7CLHIMPOrexHz2oTINX03Qb6U9hLCKjnVtbGSeR+EKH4zoXvfH7SfCCbG
r2ZEX6f9RLh3cV34mBbaTwTltDuWqg9oPxHkvNv2dHfQfiKE1q44ceU57SeC
46W98/Lf0X4iuBjaXEz9RPuJ8K1K/8ISaRe2nwjvMsJ+CFVyYfuJELy/N8lL
w4XtJ8LyJ+VunL4L20+EuevL97iYu7D9RNA7/PdKgR3zCkTwT0K3o4h5pSIs
Drv6xGks8y6L4HZq+VzxJOY1iHC3xTdi3DTmtQ37QXO6PPyY1yVCy4OjXT8G
Me+DCDkK9uEx4cyTEmNxwdDMdQuYpyLGpUyriqwlzBv+3N1QX55emsi84c/Z
EzMu37udzDyJGDen+G/7mMo8iJH/cXueyR7meYmRVL7aYtp+5gWJ8Vv/d3Kr
8mg/MSa6d3qeKKT9xHgz+UD3o3O0nxiva9Z2aFXRfmKMSisU+9bSfmLonZva
uvsG7SeGxcR1t5pu037DnwPRi7V1HtF+Ymxe63V8TiftJ0Z5r9umwl7aTwwZ
92VHP/XRfmJEWBoren2l/cTwD1p4OlfOle0nwdvaA+mfR7my/ST4GvmoOEDH
le0ngVLIArlyE1e2nwTxT9dl6Nm4suePBD/4z/ZdL2AeJMh1cOG6v2OelwQW
Q4Ehs8C8IAm4VfJ5f0xlXrQE8kt+VnfxY97wc179vu6xwiDmbZQgsGxUMG8e
83ZKYOZSIsiJZV62BFUHfS1MljGvQIIInwmCI2uYN/yc/tZQN8sqhXmXJegt
+X7X6Z3Ma5DgQrlK25i9zGuToO3MKuf6Q8wbfu7G7npyMLCAeR8kuBN8TO1V
Me3njMSJFttTzrviv8n8xOY=
"]]}}, {}, {}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["t", TraditionalForm],
FormBox["y", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->All,
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{3.7682262832734833`*^9, 3.7682263838891497`*^9,
3.768226495753591*^9},ExpressionUUID->"9225d6c4-2851-4455-966f-\
88283e92aac9"],
Cell[BoxData[
GraphicsBox[{{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.011111111111111112`], AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJxd1nlYjfn/x/Gakjat2rdzOp2W03YWYsTcLyRLkaK0IUpZp8jOUPYMTSVE
RCGSUKFVG5KlZItSloki2yBE1Lf5zef9z+/+p+u+zn0/7ud5Vec6/NmRPnN+
kZOTS5SXk/v35/8/9u/798ji5vKzXTXH+XH/nRdxF0UTvFePDecGyf49LnE2
lwOznp2LYq9f44ZPa9e0GbOc+0+p5wYPNvAafW8Nu/4u9/NjuNeXszFcRPi/
RwN3ctim6jfLN7L7GznPwwFbn7pu4Wpv/ns0c4+8hONyercx7yn3RcFCwbnq
T3b9M+5A+ZaekRvjmd/KxUx3nz8rPYHd/5wz8986YqxcEnteG3dg0S7hyBm7
mPeSk092U/ytJJl5r7iEVN9OB4M9zHvN8ZWaPH8u3su8N9x9l5SjaTdSmPeO
277b7b6c1X7m/cN5Bh/o0V2Tyq7/hzN7MiOupv4A8z9wTcOsRJrCNHb/R+72
Eq3nD1ccYs/7xDVq5W7+M+ww8zq5g71vj0xXT2deJ/fQY9ONoPx05n3mzB7a
26wPyGDeF27Uiu0alT0ZzPvKHSgx6W9y5Ajzujh5u35XtrgfZV4X11XWYN/z
8ijzvnHJLUO81mw/xrzv3JXkmOguUSbzurlVqzmNqOuZzPvBGYpPVTfPPc68
H9ztG0rLf1U6wbyfnPuc5zaxGSeY18Mpac0zPjMii3m9XGBKZFnZgyzmyWFQ
yKGC7KiT7Ho5tF2Kal6snM18OUxYxnMZcCib+7/bZfLQHZMkt3rQKfY8eXx5
IDh5ruYU837BhpuRd4uCcpj3C9oeyXtteZvDvF+gsvkHz2DdadajgIb7Z9fN
G3CGeQo43WFbtzr1DPMU4fHkjo/VwLPMU4Tasm1zXgacZZ4ivq3I3ad86Czz
+mF9cK/cptazzOuHjVHylwNscpmnBFFJDT9ufi7zlDA3Ymukdk4u85SwVcXB
8OO7XOb1h53Wt1SROI95/dF8xjChOCqPecpI2+uYln42j3nKSCp5uvHJ+zzm
KSM2dqHOUqd85qkgdZ/QaebCfOapoPeGfN3hrHzmqaJc3qx7aFs+81QRVDe8
3sbyHPNUEVnqs2rR9HPMU0Ng2k+paso55qnBlK86oef2Oeap43XLR+MJaueZ
p44BViHa70afZ546wvOOH+9Yc555A9C72zMc+eeZNwAnZ65vff/qPPM0YPgs
reqbxQXmaeB1WlH+DN8LzNPAVUutaIvtF5inCVu/lJrhZReYpwlV9Q1bCz5c
YJ4WrFtKdyZYFbC/Ly2sXbn+Uo1fAfO1ULKl3njWtgJ2vxZ+H6H9V2BRAXue
Fo6WxlldeFXAPG18nPS1falRIfO0MS3D9N3ecYXM00bigKlTeCsKmaeNeZ0C
V81jhczTxs3A+7fm3Clkng4unVMfJewlTwc3esNqJtkXMU8HXuIBh1r9ipin
g4/dEf1fxBYxTweDlU+PnXqqiHm6cNyYdFLaUMT20cXfoo51sb3k6cKyeqrB
KNti5ukiUevVtWWTi5mnizDj1vdmK4uZNxDDTXxfuB4qZt5ACC80Kd++Usy8
gVA4Nank8WvyBiK1a8PMcO0S5g1EjW93wDyXEubp4bX5Sa1XgSXM00Nr/JmO
tnUlzNODtrfJ5LCMEubpYdiMs1mzr5Cnh3TT7JDWdvL04VsS97hdpZR5+ggt
a9ix2L6UefqYkP/5XqxnKfP08fOXjxbGi0qZp4+QB14NrjtLmWcAb5UnM1+e
Is8AbuoJAv5N8gyw/+aEre0d5BmgZOnV98NVLjLPAN8GzKuwtLnIPENwH4yC
9rtdZJ4hWrrteMdmXWSeIY6vdfrdbd1F5hmiurY1fdV+8gzRG6+l736BPCN0
LJ0vyL5NnhGC0tfyTr4hzwjNK/+a5da/jHlGcO9IHLqGX8Y8I1iZKn72ci1j
njFMlrW2Xppaxjxj7P201+vhojLmGeP9tb/Xx28hzxgpsrqi9jTyjPFpZRr3
4gJ5Jriqf3nytjryTNDZU2d35wV5Jhj5crbi5R/kmaAjw8Fgpm4580xgMvfh
7qN25cwzRZOxSu5urpx5plgcNXmPzLeceaYo/2oTtX5+OfNMkfC5Y87q9eSZ
4u8Bt1OFyeSZQSf3lXTDCfLMcMXNcHxiKXlmkJfT/jalnjwziKL9Am+0kmeG
qPwhsV1fyDNHcGIE906xgnnm8GyLEQ/XqGCeOaJOcPvCDSqYZ973/zjr5yJe
BfPM0Vuq/MTHroJ5FkgMqSjTk5JngZaiVSYFw8izQIrLX0uGjCbPAtVzr3B7
PcizwKUkz58NU8jjoWFWleBrELveiId592SirtAK9nnDw7XxFluaFrD7PXlI
KlyenRZNz+PhtEqG+pg1zIvh4czuWOO6DfR8HoyrotyGbWdePg8VpeO64hKp
hwezKaEZF1OY18ZDUevBnPuHqI+PSxHBG+9kUh8fKrt2/Hkuh/r4KFfOclh7
jvr4GHWk9IZdCfXxEVo75+bFSurjo/Z1Y8LQGurjo/7ey1X766iPjz985dpb
71EfH2lVzi56j6iPD+9k+8tOz6jPEkpq3m/E7dRnifrmLGXTt9RniYZX7xf/
85H6LKH7NWH96S7qs8TA3/O2+vVQnyV0+IOfvFSoZH2WGK5T1DhHpZL1WeLw