-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathGBCheck.nb
1120 lines (1088 loc) · 44.4 KB
/
GBCheck.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 45287, 1112]
NotebookOptionsPosition[ 43177, 1066]
NotebookOutlinePosition[ 43536, 1082]
CellTagsIndexPosition[ 43493, 1079]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{"a", "+",
RowBox[{"Sqrt", "[", "b", "]"}]}], "\[LessEqual]", "0"}], ",",
RowBox[{"{",
RowBox[{"a", ",", "b"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.763349338996388*^9,
3.763349357244851*^9}},ExpressionUUID->"31e62d2d-e9fe-43e9-b29b-\
7c398d3642b6"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"a", "<", "0"}], "&&",
RowBox[{"0", "\[LessEqual]", "b", "\[LessEqual]",
SuperscriptBox["a", "2"]}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"a", "\[Equal]", "0"}], "&&",
RowBox[{"b", "\[Equal]", "0"}]}], ")"}]}]], "Output",
CellChangeTimes->{
3.763349357834186*^9},ExpressionUUID->"718dbf75-86ee-4c4b-8fb0-\
a0496fd4235b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"3",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"z", "^", "4"}], "/",
RowBox[{"zp", "^", "4"}]}], "-",
RowBox[{
RowBox[{"1", "/", "4"}], "/", "\[Lambda]"}]}], ")"}]}], "<",
RowBox[{"32", "Pi", " ",
RowBox[{"l", "^", "2"}],
RowBox[{"\[Mu]", "^", "2"}],
RowBox[{"z", "^", "4"}],
RowBox[{"(",
RowBox[{
RowBox[{"zp", "^", "2"}], "-",
RowBox[{"z", "^", "2"}]}], ")"}]}]}], "&&",
RowBox[{"0", "<",
RowBox[{"1", "-",
RowBox[{"4", "\[Lambda]"}]}], "<",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"(",
RowBox[{"32", "Pi", " ",
RowBox[{"l", "^", "2"}],
RowBox[{"\[Mu]", "^", "2"}],
RowBox[{"z", "^", "4"}],
RowBox[{"(",
RowBox[{
RowBox[{"zp", "^", "2"}], "-",
RowBox[{"z", "^", "2"}]}], ")"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"3",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"z", "^", "4"}], "/",
RowBox[{"zp", "^", "4"}]}], "-",
RowBox[{
RowBox[{"1", "/", "4"}], "/", "\[Lambda]"}]}], ")"}]}],
")"}]}]}], ")"}], "^", "2"}]}], "&&",
RowBox[{"zp", ">", "0"}], "&&",
RowBox[{"0", "<", "z", "\[LessEqual]", "zp"}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"0", "<", "\[Lambda]", "\[LessEqual]",
RowBox[{"1", "/", "4"}]}]}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "l", ",", "\[Mu]", ",", "zp", ",", "z"}],
"}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.7633494187343607`*^9, 3.763349566035981*^9}, {
3.763349600466341*^9,
3.763349710372529*^9}},ExpressionUUID->"c0d8dabc-dda4-4c34-a312-\
794106b0cbbd"],
Cell[BoxData[
RowBox[{
RowBox[{"0", "<", "\[Lambda]", "<",
FractionBox["1", "4"]}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"zp", ">", "0"}], "&&",
RowBox[{"0", "<", "z", "\[LessEqual]", "zp"}]}]], "Output",
CellChangeTimes->{3.763349569959787*^9, 3.7633496511831093`*^9,
3.7633497115249968`*^9},ExpressionUUID->"b59e6213-5b44-42e4-8906-\
62832b46cb9b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"BooleanConvert", "[",
RowBox[{
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"1", "-",
RowBox[{"Sqrt", "[",
RowBox[{"b", "-",
RowBox[{"c", " ",
RowBox[{"Sqrt", "[", "d", "]"}]}]}], "]"}]}], "\[GreaterEqual]",
"0"}], "&&",
RowBox[{"c", "\[LessEqual]", "0"}], "&&",
RowBox[{"d", "\[GreaterEqual]", "0"}]}], ",",
RowBox[{"{",
RowBox[{"b", ",", "c", ",", "d"}], "}"}]}], "]"}], ",", "\"\<DNF\>\""}],
"]"}]], "Input",
CellChangeTimes->{{3.763353996105348*^9, 3.763354014936075*^9}, {
3.7633544740066433`*^9, 3.7633544864872723`*^9}, {3.763354523550448*^9,
3.7633545624150057`*^9}, {3.763354620398822*^9,
3.763354634928678*^9}},ExpressionUUID->"b257fbca-65ca-4281-916f-\
efbd82080d52"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"b", "\[Equal]", "1"}], "&&",
RowBox[{"c", "\[Equal]", "0"}], "&&",
RowBox[{"d", "\[GreaterEqual]", "0"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"b", "\[Equal]", "1"}], "&&",
RowBox[{"d", "\[Equal]", "0"}], "&&",
RowBox[{"c", "<", "0"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"c", "\[Equal]", "0"}], "&&",
RowBox[{"0", "\[LessEqual]", "b", "<", "1"}], "&&",
RowBox[{"d", "\[GreaterEqual]", "0"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"0", "\[LessEqual]", "b", "<", "1"}], "&&",
RowBox[{"0", "\[LessEqual]", "d", "\[LessEqual]",
FractionBox[
RowBox[{"1", "-",
RowBox[{"2", " ", "b"}], "+",
SuperscriptBox["b", "2"]}],
SuperscriptBox["c", "2"]]}], "&&",
RowBox[{"c", "<", "0"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["b", "2"],
SuperscriptBox["c", "2"]], "\[LessEqual]", "d", "\[LessEqual]",
FractionBox[
RowBox[{"1", "-",
RowBox[{"2", " ", "b"}], "+",
SuperscriptBox["b", "2"]}],
SuperscriptBox["c", "2"]]}], "&&",
RowBox[{"b", "<", "0"}], "&&",
RowBox[{"c", "<", "0"}]}], ")"}]}]], "Output",
CellChangeTimes->{
3.763354015695507*^9, 3.763354486830941*^9, {3.763354555179413*^9,
3.763354563245163*^9}, {3.7633546230038548`*^9,
3.763354635298877*^9}},ExpressionUUID->"6254e8f2-308d-432f-9501-\
4326c392cbee"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{"0", "\[LessEqual]",
RowBox[{"1", "-",
RowBox[{"4", "\[Lambda]"}]}], "\[LessEqual]", " ",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"3",
RowBox[{"\[Lambda]", "/",
RowBox[{"(",
RowBox[{"8", "Pi", " ",
RowBox[{"l", "^", "2"}],
RowBox[{"\[Mu]", "^", "2"}]}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"zp", "^", "2"}], "+",
RowBox[{"z", "^", "2"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"zp", "^", "4"}], " ",
RowBox[{"z", "^", "4"}]}], ")"}]}]}]}], ")"}], "^", "2"}]}], "&&",
RowBox[{"0", "<", "z", "<", "zp"}], "&&",
RowBox[{"0", "\[LessEqual]",
RowBox[{"1", "-",
RowBox[{"4", "\[Lambda]",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{
RowBox[{"z", "^", "4"}], "/",
RowBox[{"zp", "^", "4"}]}]}], ")"}]}], "+",
RowBox[{"32", "Pi", " ",
RowBox[{"l", "^", "2"}],
RowBox[{
RowBox[{"\[Mu]", "^", "2"}], "/", "3"}],
RowBox[{"z", "^", "4"}],
RowBox[{"(",
RowBox[{
RowBox[{"zp", "^", "2"}], "-",
RowBox[{"z", "^", "2"}]}], ")"}]}]}]}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"zp", ">", "0"}]}], ",",
RowBox[{"{",
RowBox[{"\[Lambda]", ",", "l", ",", "\[Mu]", ",", "zp", ",", "z"}],
"}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.763424122000001*^9, 3.763424257941764*^9}, {
3.763424291808133*^9, 3.763424312769405*^9}, {3.763424372542638*^9,
3.763424390567437*^9}},ExpressionUUID->"ef20c4e1-fb74-45da-8a47-\
630410e1e93e"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"\[Lambda]", "<", "0"}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"0", "<", "zp", "\[LessEqual]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"24", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "2"}], "]"}]}], "&&",
RowBox[{"0", "<", "z", "<", "zp"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"zp", ">",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"24", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "2"}], "]"}]}], "&&",
RowBox[{"0", "<", "z", "\[LessEqual]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["zp", "4"], " ", "\[Lambda]"}], "+",
RowBox[{"18", " ",
SuperscriptBox["zp", "2"], " ", "\[Lambda]", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "6"], " ",
SuperscriptBox["\[Mu]", "2"]}]}], ")"}], " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "4"], " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["zp", "8"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "2"}], "]"}]}]}],
")"}]}], ")"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"\[Lambda]", "\[Equal]", "0"}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"zp", ">", "0"}], "&&",
RowBox[{"0", "<", "z", "<", "zp"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"0", "<", "\[Lambda]", "<",
FractionBox["1", "4"]}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"0", "<", "zp", "\[LessEqual]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"24", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "3"}], "]"}]}], "&&",
RowBox[{"0", "<", "z", "<", "zp"}]}], ")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"24", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "3"}], "]"}], "<",
"zp", "\[LessEqual]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"24", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "4"}], "]"}]}], "&&",
RowBox[{"0", "<", "z", "\[LessEqual]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["zp", "4"], " ", "\[Lambda]"}], "+",
RowBox[{"18", " ",
SuperscriptBox["zp", "2"], " ", "\[Lambda]", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "6"], " ",
SuperscriptBox["\[Mu]", "2"]}]}], ")"}], " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "4"], " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["zp", "8"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}]}]}],
")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"zp", ">",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"24", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "12"]}]}], "&"}], ",", "4"}], "]"}]}], "&&",
RowBox[{"(",
RowBox[{
RowBox[{"0", "<", "z", "\[LessEqual]",
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["zp", "4"], " ", "\[Lambda]"}], "+",
RowBox[{"18", " ",
SuperscriptBox["zp", "2"], " ", "\[Lambda]", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "6"], " ",
SuperscriptBox["\[Mu]", "2"]}]}], ")"}], " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "4"], " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["zp", "8"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "3"}], "]"}]}], "||",
RowBox[{
RowBox[{"Root", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["zp", "4"], " ", "\[Lambda]"}], "+",
RowBox[{"18", " ",
SuperscriptBox["zp", "2"], " ", "\[Lambda]", " ",
SuperscriptBox["#1", "2"]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"9", " ", "\[Lambda]"}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "6"], " ",
SuperscriptBox["\[Mu]", "2"]}]}], ")"}], " ",
SuperscriptBox["#1", "4"]}], "-",
RowBox[{"48", " ",
SuperscriptBox["l", "2"], " ", "\[Pi]", " ",
SuperscriptBox["zp", "4"], " ",
SuperscriptBox["\[Mu]", "2"], " ",
SuperscriptBox["#1", "6"]}], "+",
RowBox[{"256", " ",
SuperscriptBox["l", "4"], " ",
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["zp", "8"], " ",
SuperscriptBox["\[Mu]", "4"], " ",
SuperscriptBox["#1", "8"]}]}], "&"}], ",", "4"}], "]"}],
"\[LessEqual]", "z", "<", "zp"}]}], ")"}]}], ")"}]}], ")"}]}],
")"}], "||",
RowBox[{"(",
RowBox[{
RowBox[{"\[Lambda]", "\[Equal]",
FractionBox["1", "4"]}], "&&",
RowBox[{"l", ">", "0"}], "&&",
RowBox[{"\[Mu]", ">", "0"}], "&&",
RowBox[{"zp", ">", "0"}], "&&",
RowBox[{"0", "<", "z", "<", "zp"}]}], ")"}]}]], "Output",
CellChangeTimes->{
3.7634242702441473`*^9, {3.763424309069005*^9, 3.7634243164389887`*^9}, {
3.763424378918161*^9,
3.763424392243959*^9}},ExpressionUUID->"dcd47379-d90d-44bd-9ce1-\
7388291f9a10"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DSolve", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"z", "[", "t", "]"}], ",", "t"}], "]"}], "^", "2"}], "==",
RowBox[{"f", "[",
RowBox[{"z", "[", "t", "]"}], "]"}]}], ",",
RowBox[{"z", "[", "t", "]"}], ",", "t"}], "]"}]], "Input",
CellChangeTimes->{{3.763431628291383*^9,
3.763431663313323*^9}},ExpressionUUID->"a7fd91e9-37a1-4c96-b990-\
ea1f49bbd434"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "[", "t", "]"}], "\[Rule]",
RowBox[{
RowBox[{"InverseFunction", "[",
RowBox[{
RowBox[{
SubsuperscriptBox["\[Integral]", "1", "#1"],
RowBox[{
FractionBox["1",
SqrtBox[
RowBox[{"f", "[",
RowBox[{"K", "[", "1", "]"}], "]"}]]],
RowBox[{"\[DifferentialD]",
RowBox[{"K", "[", "1", "]"}]}]}]}], "&"}], "]"}], "[",
RowBox[{
RowBox[{"-", "t"}], "+",
RowBox[{"C", "[", "1", "]"}]}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"z", "[", "t", "]"}], "\[Rule]",
RowBox[{
RowBox[{"InverseFunction", "[",
RowBox[{
RowBox[{
SubsuperscriptBox["\[Integral]", "1", "#1"],
RowBox[{
FractionBox["1",
SqrtBox[
RowBox[{"f", "[",
RowBox[{"K", "[", "2", "]"}], "]"}]]],
RowBox[{"\[DifferentialD]",
RowBox[{"K", "[", "2", "]"}]}]}]}], "&"}], "]"}], "[",
RowBox[{"t", "+",
RowBox[{"C", "[", "1", "]"}]}], "]"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.763431655263824*^9,
3.763431664374255*^9}},ExpressionUUID->"f558b74c-9698-4157-bba4-\
b73cd26189ed"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"1", "/",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{"x", "^", "2"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"1", "/",
RowBox[{"Sqrt", "[",
RowBox[{"Abs", "[",
RowBox[{"1", "-",
RowBox[{"x", "^", "2"}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "\[IndentingNewLine]",
"]"}]], "Input",
CellChangeTimes->{{3.763431928499977*^9,
3.763432022608562*^9}},ExpressionUUID->"0585adc0-82d7-4112-af69-\
d46d0a8b93b5"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV0ns0FHgfBvBxzaVsKFG9qNjpVZGVkolnilReq7SkZG1JadJFKkoq0YVF
JGnaSjW5pNo0ijYri25uRaiIXBrMPb+5MDSDd/Z7znOe8/nzOec7J/TAxp2a
FAolTZ1/+8bJUF3HsBT3EMq/R/Cyxdon0JqBuLQH37TVnnhdkWhtfQwNKTFl
pmobZZY+MmhLgN60xzsWqn2jMs1KxzoZonGuwFfthYNhFybC0xEj/rDhuNpf
jHLGVZ8yccj/UDZbbZt8/aXflZexMUVcLlF7r9uRfQqrqwjouvuKpkHwuLUn
V+5xHQa59OJ0tb9H+HRKwm9i5qbzZ8Rq39LoTFasvo2YP8+5B2gSeL69aDv8
iYXOqlNfX6vNY66pkjNy8WihMGqVFkFq2FiwTJkHP4dj0jdqtyh3ZxGrQpR4
fagj2gTRbywXD7LvgfZwll2WDsHMS631Yo8HyHt65OxKXYJQO7qWMLwI1xOq
UTaJQFMZ2yiPe4RLCdL8s3oErT0B/5GvZkM5hz1zqz7B0QeGz6SfimGZ3eBq
Y0jgnTmgK731GI9vO0lmTCaYfbTKX8J4gv9tdq+ZPoWg0iOGDCpL0OPS9s3h
B4JJHV+pYqtnWD4tsLbLlKCt8vkREe8ZzPnH7W2mE9zLZ74QsstwICqde8iM
wDfK9zeBRzn0l7AP/WRBkK1fls0N/wc6fuLWhVYET2K8ow6ZV+JiBPevV9YE
1wXLLGRxlVjRy3JizCXY32QSLl1dhQraNdMmWwKT6zWakk/VuOKuzbRcRKA0
Ki2MXPECqeSR9xQHgr7TdzaQWy/AsEnm6joSlIafzBlkvASPl2c0y5kgyGmJ
6zflK+zeptpT40Zwu+7mQaFVLXIO15t7+BHImSV23am14Efs4Vj5E3iF13Oa
R2vhy9JLNggkEGkpAspa6uCd8UeZ/q8ELm6+rsnnG2C8PplazCBIMQyTxckb
EMwPXkbZR9DVfuxB5Pa3KNlxtz04kuBMdJ7lZto7GHha01bFEDQVqTSpg41Y
XpS8qfKseh/0Q6bYN2F9+/6Os8kEtB+zXM+HNSGqEQ1BaQQX5IWy2PdNeLIg
muF0mWDJxQ87Q++/R8sTbRUrj+BU3UJvx99aMHXpvHFmLcFd9tMf719ugV1w
TUHYO4Jm5iot24YWjDc9FaxsUf97+OZy8+WtYNE6ex2/ENRpnbGnmH6Aa0yy
t0hCYObWYdL4+iO05L8WyiwloNvsGlw79hEb1prN+2YjAcNQUl/t9AlU2cml
Y3YSlLfrni299QlXXZhGQcskCI3+SXEjtg3Cyf7a0/0keFiU3LHX/jOKO6+u
qkmSQGAiSPXe/hkOiua/76dLQI32dp+f9Rmv69+8zs2W4NYKw9uc0c9wvx+S
1ZYrQWZt6q6gVx3QK65n+FZLEM1Jl6wJ/oITdzJTizWkKPYiLNv0L3hzuSFg
qoEUg4Ub/LWqv+Btad2OJBMpdkcaP62gdiFZa2pJzTwpgsYy45xlXZiY3heR
tUaKm4b1icare+DusH8RO0sKd7fjwfEhPcgrsnnUmyNF5/4FzoMxPZiWfsrY
qVAK8+aUgYZ7PWhu9jrgWiHFRabPuqSpvfAIVNEEfCkSbd8ZTXT0wkD1l6fv
WhnmBp7k7hvqxdmBml2N/jJUJtlXdhp9xWnmJWnsdhlUwgsHy1Z+Rbs8Z5n/
cRmOFK9vPVLwFQXDA1a2bBnC8f6qKIoDgzMprRO2clBYw2UdKRywt9/1X+Es
B1N7dmddLgf93Y5bijzlqKndZVn4kYOSgnIHtzA55vurWDtd++BKy8qYkS9H
Zemcl/6/9KFnfV489akcmy3W9Hvs7cMxvTGfmBo5krouUufm9EFl4tfaIZSD
t5v6oEujH7M2cMJ7nIcQX+/z9u3MfiRxa6vN1g3B3D7qW7lTP2ZQ7ZqYwUNY
KytffG1nP6y6me3nzgyh8MTGksDafngfjqlwaxvCnswTFU0ZA/C0GCweyBiG
5hCr+5/CAbyzNPZ8UziMPwJrKEXVA3gYxq4zezGMutmmHmnyAUSyDC8YKYax
oODum3WbubjqHLiuLEyBl/rveC4HuSgRfHOMOK1A8F6Z/vzfudDRaid5OQqk
Orr76JZzMTnEwLj2swKiv1uaqq14iOKaH6EHjeCM5aiE7cJDQTG14NnxEcw+
bWl624+HljsJVb03RuDjxQg4lchDQALTN6BvBH82jbfTuDwYHeb7xMSOwsvJ
RmlH4aOz9/0zU9Youi6vmz3Tgg9TM6POS3WjMNqaFTLizUfoiMn8bZbfsb//
v5wnD/lghEfwqc3f0RPSrldVy0epxtI6hY4Sv7Ql2b/t4+P279WcxTQlXOq5
x/pnCrCWlWZndU+J+55XbkqcBfjhNHe2gqOEZYXXq7ENAjiPjI6dsFJBi503
1ey8AAnbNPyE11SItgtYOpclwEuSUTzeqQLvjnaw/XMBzBJPzptlPYZ32TsK
vGQCzJ2suNnxYAzMuDnuMb8JIbVtEfM54zAYbtqRGCvEz0HBO++5TODEgfjk
9MtCTNqyKD4lYwKhod2tBfVCrE/Uf06zpdBbOy58fzwgxKJHjeVHN1HoawLc
rSs1RNjdsKW0JJlCX7j2RkTbMhHyr8nPPx+m0HOqfC72bRThYXf+krbFGnRj
mqqU7BPhWPj8w5f2adCHF23V1M8VoXrNs1+eD2rQGQUG86f/I4L/SnnKHWdN
eqd12c9zPotQf32Gz6xTmvQqU4ury6eKQeNnZ2tbatGXpNVUrF4gRrzDYw2n
w1r0fN2jfX5eYnxtTgqMbNSiW8RTDUK2ixEUEbnIfbE2PXX0o8OeODHwk8nY
4iva9PGocwHRV8Q4MeXDB5m2Dv2gyPl4QrEY3pN2f/eJ1aFv6s56/QdPDL2M
rX+fP6VL31bRYWgvF8NGVzHDokKX/n8N1Hf6
"]]},
Annotation[#, "Charting`Private`Tag$3332#1"]& ]}, {}, {}}, {{{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwV0ns4FPgeBnAh61JOKOlyjIqdHlnWSol4K5KsdemM5TjWnqSmSRex2KKb
2MyhRHLGrsRETNkYhc06FhUzrpNR7nKfyfU3F6YWObPf53mf9/n8+T7Pd0vw
uSPHVVVUVEKV+avvXQ7WsA5JcgpS+esIXgpNPPxMGIi9WTSjrvRyffV1E5ML
aE6KrjRQWjetvES7Kw6aa58es1D6Xs1NykoTJqY+iSY8lbaYDbm1TE9B9PQb
7xil+3WzPy12piGCFpHBVdr0odauPxfu4kjSdJVE6dOOkWcUlEz4DhS+clhB
8LRjME/unAXtvH2lKUr/GerRJ6Hfx8Zvb8RPK52zoo+pOJiL6F9/cvJVJXBp
STWb72Sjr/bKcL3SYtahWjkjDyUWk+EH1AiSQ5YCZQv58LG6IG1QWrhwMp1Q
OChzfdNI1AmiGoy/nOU+gsOTTebpKwk23ulomnYuQn5FZMJ+DYJg831qk/Ri
ZMXVofIzAtWFi23y2BLciZM+TNAk6Bj0/bv8IBcLW7gb/6VF8GORznNpZymM
M5rtTXUI3NPGNaQ5T/E010ayfhXB5h9raRLGM3zt78Rbt5qgxjmazC6UYdCu
a8bqbwSf9Q5TpynPsWetH3/AgKCr5n+RU+LnMHofY2m6juDRQ9aLSW4lzoWn
iCIMCTzDPb+fcK6C1k5uxFcbCDK0KjNE9D+w0me6w4JC8CzaPTzCqAapoaLf
XpkQZE3s3iCLrcHeIbYNYyvBWYE+XXqwFtUOvxgIzAj0s3iqks46/NdJnWX8
BcGCbjknbO8LJJMS99VWBKPXHniTnBdgmDJFGtYE5fTL2bOMlxCL83U32RIE
2Oy0n1l4hZP/XjzFcyTIbbx/fpLCR/YPTUbOPgRyVpn5u2Q+3oeeGqHQCFzp
TSPtH/nwZGsytf0IptQUvpXCRrjf/rlS6zsCO0dPe+aNZuh5MamlDIIknRBZ
rLwZge8Dd6ucIRjovlAUdrQFZccKuwPDCOKj8o39HVqh7WLicCCaQFC8qEqd
bcOeYua3NQnKfdAKWm0pgFf32d4EJoHD5+n2N0IECG9Dc8BNgltyjuziawGe
7Yhi2Nwl2Jn65njw49cQPlNfZOcTXGm0cLf+Xog1u7Z9YvEJCrkVnz++K4R5
IK8gpJWgnXVAzaxZiE+Cion9QuW/0/2rjPZ0gO3QN2TdT9CoFm+pYvAG9tFM
9ykJgaFjr35b/Vuoyb/jyIwl2Gd6YtZt6S283Qy3zZhKwNCRNNXZdIIqu7xr
yVyCqm6NhPKcTmTasXQDdksQHPWV4t7FLkyuoqmv85HgSTGz97RlD0r7Mg/w
EiWY0J9Idj/aAytF+++PUySgRrk7bU/vQX1TQ31ehgQ5e3VyRz72wOlxUHpX
ngRp/OQTAa96oVnaxPCskyBqJEVyKLAflx6kJZeukKLUlbDNUvrRcLfZd422
FLMcb5paXT9ayhuPJepLcTJMr6KaOgCm2poy3jYpApbSYm1lA1heNxqafkiK
+zpN1/UODsLJ6uwX3HQpnBxjAq8GDSK/2LRkKFuKvrM7bGejB7E25YqeDUcK
o/ak8eZHg2hvdz1nXy1FKsvjcOKaITj7LTpMvJfiulmr7nLvELQXf3PxdJNh
q99l0Zm5ISSM80600WSoSbSs6dMdxjXWHenFozIsTt46X7l/GN3y7N20GBki
S706IguGUTA/TjHjykDH68yp8BFoxyd1LJvJocKer+xNGgH3aCFtr60cLPXN
fY15Ixh7Z/3PYhc5ePwTxpy3IygrqLJyDJFjO22Rfdx+FPYO6bfXP5SjpnzL
S9o/RjHolX+VWiGH/4ZDY86nR3FBc8kjmidH4kAqdWv2KBb1fTp6J+UQn6QW
DawYwybvEfqg7RyuNnm0tGwcQ6KIX2d4eA5GluEzVTZjWE81F7AC5+Amq/ry
l+NjoLxjdf8UPwfOpSNlfvwxuP8QXe3YNYdTaZeqBbfH4bJhtnT89jxU59jv
/uCMo9VYz6WBM4+f/XgqxXXjeBLCbTR8MY/GzQbON+XjCGPr3NJVzGNHQWHD
YX8RMm39DleGKPBSq1Vsd16EsokZ69BrCgSelmlt/48IK9W6SX62AsnWTh4a
VSKsCtLW4/coMPW7UFBHESNcZBS5L+AD4o0/Srh2YhSUUguex3zA5mvGBrk+
YggfxNUO3fsAD1eG75XrYvjGsTx9Rz/g1y1nskLviOE2H+v1zeIH/B8dsXAz
"]], LineBox[CompressedData["
1:eJwVlnk41PkDx8cxfpWjpVYr1/Ct7LqVTvT+RFvrFlHpcpQsbY54nMVKZLsk
qdjIVdqILR0zRa6iciRH44jGMRgRxjAG2X5/vJ/Xf6/n9edbw8PP8ag4jUa7
8X3/Z9qBb2Z9CxP4bSrS3nZOiAN2fhM7F/Gxxu/exthWIVb6RIq4y/nY+KmW
JZEhREpmypLV+nwEnmGIt6wT4tIP77Qz3fiwltL1CPSdBnOj6mO7E3yMc1e0
r9g0jb5DfpiL4KPLZPEtLn0aJgXLdu+5zsd232tDTTlTGLQ8cEq2ng+HqdBj
H0cFWB7w4H/PO7775tlh+ZUC4AYtyXuIj+DLJfWHbwqQws25Uyk5icMjnBaL
nQJYnBlpCDOZhFVx+5Nf8ydx4h+4allO4qQvLtvFTyK18Upfs8skbhqWVYt7
TmJMfcOMQeAkGE6bOXtVJpH+4rQmN28SHV68qY0pfAgFS4MdFQXIHuWZb8ie
AKXqsbBACeB14zX3a9wE7LYXJxQYCXAzLaBH0XcCuUl70xfZCqD39+BkpvEE
HA0yq0vPCBCXfJAcrR1HgffalTrjAoTYeo7ckxkH+3JsDvubAKFVT5+qTo1B
8mmrfpzMFFzK/Z07u8fgSo+w4GhNIT9YJ2Nd8RgWZVUev35oCrqmusoMtzF4
dOx+KVE7hUwBFRgT/xVL0jh/BLRNwWSp9bCK51c8dD2h0s2dAvufECd1fIVE
e3wYS2warh5JFruFo8hhs9YFbJyG29UdGdZ+o+C2MPK6sqYht26DaO6PEVy6
VuBiUzQNq5K1UzvtR7DBeQudVTKN9bdZehzDEcQ3O3lcY08jrin355nJL/i5
KU7FRk4I22Z9zt/RX+Dz/ksiM0yIsOR6uyc5w1BIDINWvBBXLP15e/8aBste
ajQ5WYisgwZGm/yHId2gbu1fKMTltfGr75kOI7/Oka7VL0RnGD3MlM3D6Ntn
YckOM1CppiUEK/EQ8CrWw09LhNQ1QbauLweh1rdDamqdCDcLNRLD8wfxTnzx
P5FEBNnqVR9f3BzEanJxPGGfCHabzbtygwbRxroWnXNehIBLwYwFnUFsK7qT
3vZVhMjb90dP3R6AfFpNu8WzWTxuqqP5pXNRyvzr9NuqWbgpU5u0LnPhy7bR
3NU4C2H1mePTUVy8+rHx90O8WXw1dm7pcuciLLFNGKoyh5K1ioqVa7jgnOUp
Poieg/NsUUhhcT/+9Zdx+slyHpmVUWaF3X2oTV0WVuAyD89auedfGvvArVqZ
YX5kHvtMQue3VvVhpdIvw8ej5mHUuF5S414fYst/PVP+eB7+HTp3W072wUUh
6pGP5jeYSpk3fpTpg+jR+LKS2W9wpxLfKNj0YnmXcLPj4gWMxLZ6XCG90F9E
cxtQXEAExyNCfX0vPA/I5cuvXUCFoCjrd7Ve1ErqbPfyXsAVaW+dh+M9SHc+
ErS0ZQFve2MChKk9yIzw5RnuoZGBMtH5S9McGJYtFsYfpJGQysFk71EOyiTz
6N2eNDI2qkW37efg88U+xkV/GgnaJd9g3MSB2u2De4YSaORDTcLsqUIOUqvs
qzJf0MjM+olB7u8cJMkapytoipGO1OALt/o/IyZjbtfkFzGypFQ6j83rhoPh
swAdvhipki9KkP3UDbXyk1c8ZsSIFXkYZd/QDVYP7/17ujjZnWm2T/SoGxOr
2+wL1MTJm5qM9KFT3fDIf2zr5SBOQqPt2lSXd2Mb84Ql+5E4ccu/qOBm2QVa
02fyIlyCRK5f8qWxqROxQ6WZ4X9KkBk+k2qt7sRi2i3xzeckyFs3M6r/eScU
9PZVPb4mQV4eWTChcjqxOr5xZ2GRBLGz6dVWC+6ElUmFXRZXgkjoyS0TV+rE
1ezsA+ccJYlhRdlxhncH1gR5he7WppOGc3q5s4x26G3pdsowpJO1l2JGRle0
w5i214C3gU7ixl14g3LtML9gyY2yoJNKnnzP2FwbDuXo7r5/gE7SEnLH7Nva
kNI8YSB+mU7e3UoasrjaBvr6qIFCPp2ImXIL30u3oU9w3UW6RIqonxtukZZj
w6rf51RSwCKScjJRVKLdCru+RB01tSVkV//x6yPXm8Gr9IiuKZAm4ZxtdVcd
m6Av36pqcViWCCnli3WqH7AEAvdOvhy5oDAruqDeiJ0jrtOazj+Qjzrb0rK0
34NdcUTMVVee/NCo+cQorx6Pz1UdYgjkydahKntl1MGLHvy5vl6BUMyWw7qd
7+AZGPFYJnUZWd4UKxP+4C0MjunU27gvJ37nmyP46W/QoKArHbz5R/KXQsHs
usQaPH8Qk6YroUg8m57e3nG3GhFi2g61nxRJ+faRaHbJayzpDP/tRPEKskJ/
z49vhl6h/45GckbkT0TKS98v2+gVkn9WkmQ6K5Fr+/VdbEKqkJjqVe3OWEmS
SqXq8psr4Zp8sF5mYCWRi98R1bW1EsLtuTMZpcrk1/ExS+U7FejtNw+tiFch
W6qzBgTqFcgyM1Kuc1clwSOH5Tgp5Sg4Gyx/TE+N3M9WVJFTK0e8s6e1hECN
KKvOFtcUlGF9Z+a9+Dp1sm1ikO2+pQw3fkkrqLNmEOusAEufvJeIKrt4w5rJ
IKb7GhevbC2FrbJz7ttVGsQ6pHpWWqEU205U75dP0CAszf4P7zxLkKHisapW
oEGSMkSWfxe+wKrKuyl2+zWJK81hUnbpCyTqVWh/KNUkDaULhw+GPocXX7Lx
jTZFRlyHQgY6WPD4d4KRcJkivoNspRUOLByPcZqzukKRz65WNY9sWQh2Kv4o
c5UiqSomXAdrFs4Jgi8lplBEncbwv7CDhQebZ2av36KIa1fGs0VmLMyUL7Te
uU8RLz+OmKI2C4kfZC5WVVPk9er5rBhJFlKz//COe0ORmS31UnriLGQH1Vv8
9o4iJbsOt35cYOKJYqLoXT1FcgNtnunPMtHpusy7qYUiVgc0YjnjTGj1Kln0
9FLEzNlec383E4bF4Wo5/RSJ9T5tLPOJiS1nO2aODlAkTCy9qKSdCRutW0VD
PIoUO5lyNVqZCPRlqI2PU0TlbqvF11omIk3/nHnIp0hTrU9W9lsmzsr2NAcJ
vvdlSfvsrWHiRmH2eaGQIvObxI0rK5nIipY8xhJR5Ppp9Q1h5Uzc33XUPHKO
IrLR7NsGL5ko1nytuvUbRfKU5IO4L5go5a+Z+X4oSItRQeEtFhP/AQPtsfg=
"]]},
Annotation[#,
"Charting`Private`Tag$3373#1"]& ]}, {{}, {}, {}}}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->All,
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.7634319429965343`*^9,
3.763432023146563*^9}},ExpressionUUID->"cd8a40ac-cdc3-4120-a4a0-\
3e185b66e7dd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Log", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Abs", "[",
RowBox[{"Log", "[", "x", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.76343220287383*^9,
3.763432240519951*^9}},ExpressionUUID->"242d5f8c-eb1d-427d-a78a-\
b366f703324e"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVzXs81Pkex/GZH7XlsutSQprwqxTSZVfJGp9P6UYqlyxHUhTaLrq4JpVK
0SHRisGWjYiEbHSvb+Q27rllmYwaY6JpwxgZTI7zx/vxejz/eht4H3PyoRgM
Rsj0/t+1MEPjP1Zc8O6L0tCYkJERTokxP5YLLR+MQy2qZWSzX62gWcaFn9s7
5sVFyohY4ZvLs5Ya6AheLQxnyIgFe4fllag6yH4zayhMcYw0FU5SRl8bweS/
wyVFa0aJBsz2VDVrAl8V299DGKPk1yWJllEHmqD42vuI4RopiRvJlYS9bYLZ
a2c4j3pJyS8JbT7eeW/By6ht44vkEXKuxtRu1d4WOB5QmStjSUhO0eMleTda
4EZtHmU5PEyaORsUFte1QFHRg6WjFcNkkZ/bC+11rVC0s8n9nf8wqVGINGNo
tkFRzD3HsYohosXu0misbAdxXml1VdQgKSi80nXErBNo/oP47aliMqAxEGvn
1QlVgoRvezzExCjYznppYifkn+K6CVli8peV8m2BrBNM20LljlmfyXVurK97
RRfcVCpPCXg8QIIF14a2eLyHn6Y4909//UTSlWsvqm/qge1fVjduzhISa/Zp
jwjPHvCM6ZD7BQgJz9/E/GtIDyRsSj3Svl5ItJtj+uru9cBdE2PXZH4vSeDY
20arfYAT6Z3e8axecnFxw49TXR/gU5X5vDu5H4kfvE0RnxSAsqvDMcduPmFk
jD7rihGA7RmZ5qlYPuEo6vFq7gigR67QPetXPqnm+rJy2wUA0hVVHindZOmu
yQwfy17Y4OU185n7e/LpoNH9bqYQPPrPvwn+2kkOXT/zqim+DzJ72WEzdrcT
SprBJ7l9UD/Fag2c005SXasZhWV9kH51Z/aqhjZSo6dpc3WkD4L1tqolbGgj
JndzqmzdRPD67PLxVrNWIn7e0lS28BMs6Ba9FM1pJv7CZYLign6IeWFYmrqk
jvR4/jOrlNsPoqNsieZftcS5I9qsvrcf8tnmIzq6tcSiVnRKqDsALqbKTVU/
1RCFoiw1ragBULG3LYphVhNOuIF1yN7PkFMpYVXI35BSTZ2UdWpfgMls07e/
84QoGUQa8S0GgVn/55MIdixUWyWsOLtpEAIiTazYlglw2e3W2gVOg5BMOVFO
zolAxT/ZsvvwIJAvj7SczqbC+Hex37ubgxD8udJ0tkcmfOa55DRSQ8DwsFzc
6lkIdRyjZa/rhsAywLBSze45xKnVGt/eJwFLB1UN7sVq8O7aRRTqRsFbq7Mr
JqcdTlREeh8zGoeOsKZ1bgF8KDqu4qxtK4c/T0q26boJ4PbpwwMrXRn4N9vd
qamzDy6kTzqOiJmo6OOuteZtPzBaevBFmALy6nNqfwkTw5JA39BdxjPwSH3B
vlWGX6FXmvyb8suZeCtkhRV5NAh2wkNnrp+YhaOXrkQMdg/Bjt54ExZLCdti
v+y2+XcYBt54R1TnKyOH4R+txpOAmXr7Apu9quiaByGbG0dACaRePMmPmLmw
vX84Swpbvrh/M3RRQziRFnP5wih0lB1gupuqY0FCbZyewzcoiS731JeqY4Zj
3+qZP4yB74ygnoYGDcz5GOJ8uXwM9p88XaKSqonn9R26+EdlsMLPpMHeaw4K
rc1neaqOQ6OGqXLQurmYKexKyno4Ds8LLqSZKmhhhvxW6cjWCTjNNHaoe6+F
pidKHHi9E6DEC9vqXzwPGaH7eO6hkyDMNkhMD9fGsUD+Knv5JCQu1VF86qKD
h3vll15HyyE+1bfKS18XbTje/KqZ38E9cU+DikgXNYxUk++f/Q5jG7Nk6a/m
49yHih6fJ7+DQLghtCxKD9We/pFtf2wKMtir5td7LcDHFdUyrmgK8i8Fqfst
Z2H5rdC2ZGMGRrns36YgZWHfc/sj7Z4MNOfdzo2qX4jaWiITpSQGcpal5ddv
08c4nrYPVjPw3OurnG1P9ZGdfship5yB2+e7ZNUsMsAzD/MLtFcycb1/1W71
Kwb4qn7LsIcnE9P1vBfVSQ1QUbd5z75rTFz05m7Sjt2GeHJ9UIrOCybGLy8z
bn5liLETFcsURUz0lSi+5RrTGL/GlX1jDoXeRcP6V67R6DRvQNHcmsIjF5wn
7RJoPPVD0ph42kHOxe9U/qDR/97LrjtAYbQ0KC4+iUa6N+b4nPUUFqyTTSTf
pDFTFtw6bEOhrHSqPTuPRo1786Pv21IY36xytbyKxo0v5z7UdKEwNfPowctc
GuUeojTutDMDG2y21tIYpHQ98NxvFD7Sih+vbaBRfeZZ6YArhTx3zYMtbTRC
CmNNqTuFRgIdm48CGveGmxUf2kfhyuIw1h0hjasPiNIWelFoealL5iOiMZKf
HdA6bXujmw/6B2gk7zZK2PspPHlYnzU0RGN40raf1XwpDLc6L/tbMv0vikor
n/Yl1Y+tgVIayzZ/kIT6UcgpzIwZG6Px0d7RwA8HKcyIUPR7Nk7j8sLHN2/8
TmGeo8+G8Ekab1ncfmR7iMJiw8oF1t9pnF9RQuTTfiVZIpuaonFCb+xJ0WEK
/wc13qzo
"]]},
Annotation[#, "Charting`Private`Tag$3461#1"]& ]}, {}, {}}, {{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwV1Wk41P0eBvCZv6VsZSkha0MK0aak9P1lqUg9lsSRFFkKESJJRSo8VEgM
lZ0shckWLfZl7NkPUyO7MQwztrEe58V93dfn1f3ylrN1M7HHcDhc3mb+365W
jXqlbhEQ/TNHuvuSIPq9LX59tScSFi+2KVgtbEfy6TzHllfeQlzy3cTM0m3I
RcvrzqJMLOwPJpsfyhRA+Z0DqXM670GBYktkF/OjZWdDyqxjAixdiC49PMCH
EvGUkEW9JKgxXtuOl+JDus0RCgs9yWCbY3ypxYkXjRPPVczdTgX3hiPif2t5
UJjdmhVrJQ3WpxKsd6vxoI6VW1EzMplA1zhZmyy1FXnXSR9kkLLAL0lQ3jdp
C5J409k4pfMJdp5rrXdS2YJslRDHpGMu2P21K0m5zI2wFd/WOb88EKn5VFg8
w4U6B8yk5vRIkPLwyKh7BBfy+cRXwuz5ArV++RhQOZFB5Cg3MzEfuEma0amh
nEjSp+Ly7O0CGCLO5xmf5ETlOvdnGCuFsBjd+zs0hQNt6R9UnJIpAUmOt1Ii
kRjqLf/hRR8vAd0DUwwBUwxlpROrJkml0Bi94UTbiaFLHpeu03S+w03bvfj+
RDyK5imNHnMsgxs8U70iZBwquG/g4SlWDn10rDMgGofe046Ls/zKgSz6pkHR
Hodc24QdmXoVEODoNvuXC4eE39djsz2VoOTCu3zt4zqsbCvKvHuqCnyuUqUm
TNZhOCDFaCaxCgLPHBPej1uHIsfH8Yzb1TD3fvpE4PU1sDxyVHN6pQY+3VF+
uKi2CkkNCe6TMmTwtK5p5xJYhjlioRI1jAwdf5V8NOrZcNaxcaidTYYj3b27
Xj1jA51j0ay0owF6vQ+P+OHYoKF1STMkqAnSq7bO+nIuQVvuKqbIaAXlf5mF
pGMLIAw81gKqbeDAr3/7Pm4BTu6N0gyya4OC17/9mQ3z8Gouk+X7qw14jnOZ
LtjMw9GILnvb7F9go9il+z1mDp40qBgcut4Bdz1rM9nSLMggFe/NftsBbxuz
MU0mE9qJ2hwKTR1AIuXtW6hhgryjxXexE51A+qfNsseVCQ0cz1RxIl1ACs0y
XqqZBVGtfuHW2m6gZ1fU1wXNQE5uSL+Lah8QqHnhF+PoQBOmhRnY9EHdUMTi
NSs6KHobnN4X1QefH5AtRqTpkHiKL2mI3QcqXT5rxmmTEEkOc7Cs6YcPvNWx
nsU08B56PXvO6jds3yB+esgYhwS+xkAhvQG4OHW49WzaCJzWemjlbz0A1qG9
a46eI0BxVVZn3B+ACL04l+4zIyDWHjralDUAH5WVzGOowxBBNNQPFvwL7gl9
tuHSwxCo0LJto/8vjNep70rNHARH+BVL9xgCPnMjN+M/VMAlL5T2hw6B/iO2
yIMwKhA5JSkNqUMwsMbxZ+tJKtSTHaQzu4cA5tXqrGL/wL7Lq8n2msOgbWPD
XWr5G8ZvKX76gx8Bq4mAKm9GHzhFPvrZFj4KKcNavlxXuwGbT6aWZY5C84Z0
570d3RBnXo/LrRyFhJf/pB9q6YIGSRGdl3Oj4C15XjBCuwuUP2bU6VuMQfnj
A8udqp1A/9bRVikzDlJ/xn6M7WgH15H9QwU5ExD6fU9F3N4mGLD+79YK8gSM
3dFiiSQ2gmlvsGrz8AR81lKfE5doBI3GsQcjEjQwU+Frq9veABykNEHRIBrw
G+qTQvH1QPSTO33/+iRk1LKka9aqgHeh7Wag7ySUMGe2hTypgkdu/iGv306C
dDwXBxlfBba21M6PjZNgeFhXrWRLJaic/+Dce5wO43FFxUi8HCpExGNPCE4B
Ht8la5j6FY6+rP+ppzwFk+F3AvyKiiGd22fY+OwUPPIgbQSTiyCM3a3m5DcF
P2Yj8QeZBXCFGlUbNz4FhtqBlf9eJEG9hS49nWMahkzJxLsOeXCynSWULz0N
1zrMPhrickG2xuRa4+VpeOkRZrTonA20LMG5lfJpsLTAL164kgpW8uXiWynT
cD7vnnBtVDK0fnCDHYvTIBy715/cmQgF4S3/qhxgQIbdtHbVlzhQ5H2cp3Ge
AYH7JCQHT8ZAXOCBbt2bDFDqgUfrdW/giXeY3LVYBqir/yfxWHsIMBknz90u
YABd0OU0YfUp2N2edPFqZUCZa0RFtbkP9AzGRQbQGCCfX/Mm47k9KKgqUGqx
GbiszTfOOnoW/tBWpw0FZyCr2G4uXfcuED924jukZmAw6IuhRfEj4JV7pkjV
mAF88/uv/lphUH8qQu2x3gx4PlM+paUZAS8s4o9LmcxADGaCmZhGARb+9dxV
5xkomyoSNXkcB8vrdMeeDzPgPVmrwmOVApMUs4xWbBZwVpoKnda50ERU3F/e
NAuanntqBQ2+wSvBRqWkGyzQNBIQJgfWg23/5TKOpgWwFe3rD83oBveaZ7Zu
isvQ69t2wsKTCqS7/KZi+mvw3oN1QcJiCJIeOtMOmuPQFy1Lk7a+UXiasGo8
R8cjTntL0WO/JgDXMYC++3IgSnNG41FfOuy95+BzWYkLuTTn3Di0hwHD8zFX
+H5wo/j7aqfKimbAYMTpUaT7VrTwPMR/5s8sXBoOV5aW5kVdYVNXdaaZQKuy
9a//zIeIONdgQQoLVIW6pXSuCyDzbLh/tnUOeGHehsLahlJkuieYafNwbspy
cY+ZIAL3d6Evni5Ab6Ud3lJFCOVENL6SNFqEwuBqa9l5IZRsPHqYe8sSOHB5
DbS0CKOMwfumL6qX4KbHw0L+OBEUIGvUT73DBjVH5RZDmx1o5LT6VuvNP2gV
VuHzOrETpYz0R6flL8O3nKfvVDhEUfJafMXc+RV4iFcyavotilTcC40owyvA
S/E971qwC+F8blAsfVZhJF0uKsFPDC3dox4yXFuFqH3inCVm4sh5eO15efAa
hMc51NnISiAdoi21jnsdLKOutfCPSSBhRYGYT4/XYUk3jZ3wczfamc9pNbm6
DkMj2j6VQZJIsORNuqHbBiRrHdrdbCOFimvq2eSxDfj83EvI8YA0qo736YpR
wqEgs5sXOOal0eg3Q5duaxxSpyRlBjXLIDHRMWXezb8l7n/3ufmCLHpFEbNH
9Tj0pPwl8UKJLNJKcNL4Zw2HLu42S2uQl0OP8j/niB3EozOudVeFQuTQz+Zz
TCtrPEqQtJVvmpdDnBLt1268xiP5qo/Rl67uQR5nvGLFv+NR+IFKpfafe1DY
Ss1+zjE8cmBx/iIrEVD4MXOttzswZEtiyoa8JiCTXTRO9dMYcnlqumoQQUAP
tkQv0TftZVrQw/+GgFyzfvSnAoaC571ehUcTEGE49O6OMxjKOcFeiflAQCls
706mDobYFRvd6dkEJJy1O/iTPobC2/lfVtcRkO6PnfkiZhiKS7lz6wWZgNas
xt6RN51yr0XnfCMBefFG3ntyBUNFouHLjS0EJMT9eJ5mjiGKpcitji4Cgljc
sQpLDCkOiesMDhHQdT/VAqcbGDpY4CudOkJAh+3G3snYYEjzeT/bfoyAnlHT
PTs3baj4IW+CRkBlPbosrZsY8nCWlZ6dJSC/6AtHBB0w5HcqgP2Ftbk/FvSu
etPPBQY7780TUOXZvywfRwwRc1NCl5YIqOj6wr2/tzCU7M/pWLpMQAdyiz+8
vY2hbGN7bb9VAorXSCrSd8JQwZ5aqdPrBLS7prBsbdM/WXvZGxsEtCK59JXk
jKH/AdmOXYE=
"]]},
Annotation[#, "Charting`Private`Tag$3502#1"]& ]}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {-1.623796532045525, 2.3025850725858823`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.763432222026484*^9,
3.763432241590435*^9}},ExpressionUUID->"792003fd-ffd7-4745-b2dd-\
ecaf561a380f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Reduce", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",