-
Notifications
You must be signed in to change notification settings - Fork 221
/
item_26_when_use_multiple_inheritance.py
234 lines (180 loc) · 7.77 KB
/
item_26_when_use_multiple_inheritance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Item 26: Use multiple inheritance only for mix-in utility classes
import json
# Python is an object-oriented language with built-in facilities for making
# multiple inheritance tractable (see Item 25: "Initialize parent classes with
# super"). However, it's better to multiple inheritance altogether.
# If you find yourself desiring the convenience and encapsulation that comes
# with multiple inheritance, consider writing a mix-in instead. A mix-in is a
# small class that only defines a set of additional methods that a class
# should provide. Mix-in classes don't define their own instance attributes
# nor require their __init__ constructor to be called.
# Writing mix-ins is easy because Python makes it trivial to inspect the
# current state of any object regardless of its type. Dynamic inspection lets
# you write generic functionality a single time, in a mix-in, that can be
# applied to many other classes. Mix-ins can be composed and layered to
# minimize repetitive code and maximize reuse.
# For example, say you want the ability to convert a Python object from its
# in-memory representation to a dictionary that's ready for serialization.
# Why not write this functionality generically so you can use it with all of
# your classes?
# Here, I define an example mix-in that accomplishes this with a new public
# method that's added to any class that inherits from it:
class ToDictMixin(object):
def to_dict(self):
return self._traverse_dict(self.__dict__)
# The implementation details are straightforward and rely on dynamic attribute
# access using hasattr, dynamic type inspection with isinstance, and accessing
# the instance dictionary __dict__.
def _traverse_dict(self, instance_dict):
output = {}
for key, value in instance_dict.items():
output[key] = self._traverse(key, value)
return output
def _traverse(self, key, value):
if isinstance(value, ToDictMixin):
return value.to_dict()
elif isinstance(value, dict):
return self._traverse_dict(value)
elif isinstance(value, list):
return [self._traverse(key, i) for i in value]
elif hasattr(value, '__dict__'):
return self._traverse_dict(value.__dict__)
else:
return value
# Here, I define an example class that uses the mix-in to make a dictionary
# representation of a binary tree:
class BinaryTree(ToDictMixin):
def __init__(self, value, left=None, right=None):
self.value = value
self.left = left
self.right = right
# Translating a large number of related Python objects into a dictionary
# becomes easy.
tree = BinaryTree(10,
left=BinaryTree(7, right=BinaryTree(9)),
right=BinaryTree(13, left=BinaryTree(11)))
print(tree.to_dict())
# {'value': 10,
# 'right': {'value': 13,
# 'right': None,
# 'left': {'value': 11,
# 'right': None,
# 'left': None
# }
# },
# 'left': {'value': 7,
# 'right': {'value': 9,
# 'right': None,
# 'left': None
# },
# 'left': None
# }
# }
# The best part about mix-ins is that you can make their generic functionality
# pluggable so behaviors can be overridden when required. For example, here I
# define a subclass of BinaryTree that holds a reference to its parent. This
# circular reference would cause the default implementation of
# ToDictMixin.to_dict to loop forever.
class BinaryTreeWithParent(BinaryTree):
def __init__(self, value, left=None, right=None, parent=None):
super().__init__(value, left=left, right=right)
self.parent = parent
# The solution is to override the ToDictMixin._traverse method in the
# BinaryTreeWithParent class to only process values that matter, preventing
# cycles encountered by the mix-in. Here, I override the _traverse method to
# not traverse the parent and just insert its numerical value:
def _traverse(self, key, value):
if (isinstance(value, BinaryTreeWithParent) and key == 'parent'):
return value.value # Prevent cycles
else:
return super()._traverse(key, value)
# Calling BinaryTreeWithParent.to_dict will work without issue because the
# circular referencing properties aren't followed.
root = BinaryTreeWithParent(10)
root.left = BinaryTreeWithParent(7, parent=root)
root.left.right = BinaryTreeWithParent(9, parent=root.left)
print(root.to_dict())
# {'parent': None,
# 'left': {'parent': 10,
# 'left': None,
# 'value': 7,
# 'right': {'parent': 7,
# 'left': None,
# 'value': 9,
# 'right': None
# }
# },
# 'value': 10,
# 'right': None
# }
# By defining BinaryTreeWithParent._traverse, I've also enabled any class that
# has an attribute of type BinaryTreeWithParent to automatically work with
# ToDictMixin.
class NamedSubTree(ToDictMixin):
def __init__(self, name, tree_with_parent):
self.name = name
self.tree_with_parent = tree_with_parent
my_tree = NamedSubTree('foobar', root.left.right)
print(my_tree.to_dict()) # No infinite loop
# {'name': 'foobar',
# 'tree_with_parent': {'parent': 7,
# 'right': None,
# 'left': None,
# 'value': 9
# }
# }
# Mix-ins can also be composed together. For example, say you want a mix-in
# that provides generic JSON serialization for any class. You can do this by
# assuming that a class provides a to_dict method (which may or may not be
# provided by the ToDictMixin class).
class JsonMixin(object):
@classmethod
def from_json(cls, data):
kwargs = json.loads(data)
return cls(**kwargs)
def to_json(self):
return json.dumps(self.to_dict())
# Note now the JsonMixin class defines both instance methods and class
# methods. Mix-ins let you add either kind of behavior. In this example, the
# only requirements of the JsonMixin are that the class has a to_dict method
# and its __init__ method takes keyword arguments (see Item 19: "Provide
# optional behavior with keyword arguments").
# This mix-in makes it simple to create hierarchies of utility classes that
# can be serialized to and from JSON with little boilerplate. For example,
# here I have a hierarchy of data classes representing parts of a datacenter
# topology:
# class DatacenterRack(ToDictMixin, JsonMixin):
# def __init__(self, switch=None, machines=None):
# self.switch = Switch(**switch)
# self.machines = [Machine(**kwargs) for kwargs in machines]
#
#
# class Switch(ToDictMixin, JsonMixin):
# # ..
#
#
# class Machine(ToDictMixin, JsonMixin):
# # ..
# Serializing these classes to and from JSON is simple. Here, I verify that
# the data is able to be sent round-trip through serializing and
# de-serializing:
serialized = """{
"switch": {"ports": 5, "speed": 1e9},
"machines": [
{"cores": 8, "ram": 32e9, "disk": 5e12},
{"cores": 4, "ram": 16e9, "disk": 1e12},
{"cores": 2, "ram": 4e9, "disk": 500e9}
]
}"""
# deserialized = DatacenterRack.from_json(serialized)
# roundtrip = deserialized.to_json()
# assert json.loads(serialized) == json.loads(roundtrip)
# When you use mix-ins like this, it's also fine if the class already inherits
# from JsonMixin higher up in the object hierarchy. The resulting class will
# behave the same way.
# Things to remember
# 1. Avoid using multiple inheritance if mix-in classes can achieve the same
# outcome.
# 2. Use pluggable behaviors at the instance level to provide per-class
# customization when mix-in classes may require it.
# 3. Compose mix-ins to create complex functionality from simple behaviors.