-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathenvelopes.h
523 lines (470 loc) · 16.6 KB
/
envelopes.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#include "./common.h"
#ifndef SIGNALSMITH_DSP_ENVELOPES_H
#define SIGNALSMITH_DSP_ENVELOPES_H
#include <cmath>
#include <random>
#include <vector>
#include <iterator>
namespace signalsmith {
namespace envelopes {
/** @defgroup Envelopes Envelopes and LFOs
@brief LFOs, envelopes and filters for manipulating them
@{
@file
*/
/** An LFO based on cubic segments.
You can randomise the rate and/or the depth. Randomising the depth past `0.5` means it no longer neatly alternates sides:
\diagram{cubic-lfo-example.svg,Some example LFO curves.}
Without randomisation, it is approximately sine-like:
\diagram{cubic-lfo-spectrum-pure.svg}
*/
class CubicLfo {
float ratio = 0;
float ratioStep = 0;
float valueFrom = 0, valueTo = 1, valueRange = 1;
float targetLow = 0, targetHigh = 1;
float targetRate = 0;
float rateRandom = 0.5, depthRandom = 0;
bool freshReset = true;
std::default_random_engine randomEngine;
std::uniform_real_distribution<float> randomUnit;
float random() {
return randomUnit(randomEngine);
}
float randomRate() {
return targetRate*exp(rateRandom*(random() - 0.5));
}
float randomTarget(float previous) {
float randomOffset = depthRandom*random()*(targetLow - targetHigh);
if (previous < (targetLow + targetHigh)*0.5f) {
return targetHigh + randomOffset;
} else {
return targetLow - randomOffset;
}
}
public:
CubicLfo() : randomEngine(std::random_device()()), randomUnit(0, 1) {
reset();
}
CubicLfo(long seed) : randomUnit(0, 1) {
randomEngine.seed(seed);
reset();
}
/// Resets the LFO state, starting with random phase.
void reset() {
ratio = random();
ratioStep = randomRate();
if (random() < 0.5) {
valueFrom = targetLow;
valueTo = targetHigh;
} else {
valueFrom = targetHigh;
valueTo = targetLow;
}
valueRange = valueTo - valueFrom;
freshReset = true;
}
/** Smoothly updates the LFO parameters.
If called directly after `.reset()`, oscillation will immediately start within the specified range. Otherwise, it will remain smooth and fit within the new range after at most one cycle:
\diagram{cubic-lfo-changes.svg}
The LFO will complete a full oscillation in (approximately) `1/rate` samples. `rateVariation` can be any number, but 0-1 is a good range.
`depthVariation` must be in the range [0, 1], where ≤ 0.5 produces random amplitude but still alternates up/down.
\diagram{cubic-lfo-spectrum.svg,Spectra for the two types of randomisation - note the jump as depth variation goes past 50%}
*/
void set(float low, float high, float rate, float rateVariation=0, float depthVariation=0) {
rate *= 2; // We want to go up and down during this period
targetRate = rate;
targetLow = std::min(low, high);
targetHigh = std::max(low, high);
rateRandom = rateVariation;
depthRandom = std::min<float>(1, std::max<float>(0, depthVariation));
// If we haven't called .next() yet, don't bother being smooth.
if (freshReset) return reset();
// Only update the current rate if it's outside our new random-variation range
float maxRandomRatio = exp((float)0.5*rateRandom);
if (ratioStep > rate*maxRandomRatio || ratioStep < rate/maxRandomRatio) {
ratioStep = randomRate();
}
}
/// Returns the next output sample
float next() {
freshReset = false;
float result = ratio*ratio*(3 - 2*ratio)*valueRange + valueFrom;
ratio += ratioStep;
while (ratio >= 1) {
ratio -= 1;
ratioStep = randomRate();
valueFrom = valueTo;
valueTo = randomTarget(valueFrom);
valueRange = valueTo - valueFrom;
}
return result;
}
};
/** Variable-width rectangular sum */
template<typename Sample=double>
class BoxSum {
int bufferLength, index;
std::vector<Sample> buffer;
Sample sum = 0, wrapJump = 0;
public:
BoxSum(int maxLength) {
resize(maxLength);
}
/// Sets the maximum size (and reset contents)
void resize(int maxLength) {
bufferLength = maxLength + 1;
buffer.resize(bufferLength);
if (maxLength != 0) buffer.shrink_to_fit();
reset();
}
/// Resets (with an optional "fill" value)
void reset(Sample value=Sample()) {
index = 0;
sum = 0;
for (size_t i = 0; i < buffer.size(); ++i) {
buffer[i] = sum;
sum += value;
}
wrapJump = sum;
sum = 0;
}
Sample read(int width) {
int readIndex = index - width;
double result = sum;
if (readIndex < 0) {
result += wrapJump;
readIndex += bufferLength;
}
return result - buffer[readIndex];
}
void write(Sample value) {
++index;
if (index == bufferLength) {
index = 0;
wrapJump = sum;
sum = 0;
}
sum += value;
buffer[index] = sum;
}
Sample readWrite(Sample value, int width) {
write(value);
return read(width);
}
};
/** Rectangular moving average filter (FIR).
\diagram{box-filter-example.svg}
A filter of length 1 has order 0 (i.e. does nothing). */
template<typename Sample=double>
class BoxFilter {
BoxSum<Sample> boxSum;
int _length, _maxLength;
Sample multiplier;
public:
BoxFilter(int maxLength) : boxSum(maxLength) {
resize(maxLength);
}
/// Sets the maximum size (and current size, and resets)
void resize(int maxLength) {
_maxLength = maxLength;
boxSum.resize(maxLength);
set(maxLength);
}
/// Sets the current size (expanding/allocating only if needed)
void set(int length) {
_length = length;
multiplier = Sample(1)/length;
if (length > _maxLength) resize(length);
}
/// Resets (with an optional "fill" value)
void reset(Sample fill=Sample()) {
boxSum.reset(fill);
}
Sample operator()(Sample v) {
return boxSum.readWrite(v, _length)*multiplier;
}
};
/** FIR filter made from a stack of `BoxFilter`s.
This filter has a non-negative impulse (monotonic step response), making it useful for smoothing positive-only values. It provides an optimal set of box-lengths, chosen to minimise peaks in the stop-band:
\diagram{box-stack-long.svg,Impulse responses for various stack sizes at length N=1000}
Since the underlying box-averages must have integer width, the peaks are slightly higher for shorter lengths with higher numbers of layers:
\diagram{box-stack-short-freq.svg,Frequency responses for various stack sizes at length N=30}
*/
template<typename Sample=double>
class BoxStackFilter {
struct Layer {
double ratio = 0, lengthError = 0;
int length = 0;
BoxFilter<Sample> filter{0};
Layer() {}
};
int _size;
std::vector<Layer> layers;
template<class Iterable>
void setupLayers(const Iterable &ratios) {
layers.resize(0);
double sum = 0;
for (auto ratio : ratios) {
Layer layer;
layer.ratio = ratio;
layers.push_back(layer);
sum += ratio;
}
double factor = 1/sum;
for (auto &l : layers) {
l.ratio *= factor;
}
}
public:
BoxStackFilter(int maxSize, int layers=4) {
resize(maxSize, layers);
}
/// Returns an optimal set of length ratios (heuristic for larger depths)
static std::vector<double> optimalRatios(int layerCount) {
// Coefficients up to 6, found through numerical search
static double hardcoded[] = {1, 0.58224186169, 0.41775813831, 0.404078562416, 0.334851475794, 0.261069961789, 0.307944914938, 0.27369945234, 0.22913263601, 0.189222996712, 0.248329349789, 0.229253789144, 0.201191468123, 0.173033035122, 0.148192357821, 0.205275202874, 0.198413552119, 0.178256637764, 0.157821404506, 0.138663023387, 0.121570179349 /*, 0.178479592135, 0.171760666359, 0.158434068954, 0.143107825806, 0.125907148711, 0.11853946895, 0.103771229086, 0.155427880834, 0.153063152848, 0.142803459422, 0.131358358458, 0.104157805178, 0.119338029601, 0.0901675284678, 0.103683785192, 0.143949349747, 0.139813248378, 0.132051305252, 0.122216776152, 0.112888320989, 0.102534988632, 0.0928386714364, 0.0719750997699, 0.0817322396428, 0.130587011572, 0.127244563184, 0.121228748787, 0.113509941974, 0.105000272288, 0.0961938290157, 0.0880639725438, 0.0738389766046, 0.0746781936619, 0.0696544903682 */};
if (layerCount <= 0) {
return {};
} else if (layerCount <= 6) {
double *start = &hardcoded[layerCount*(layerCount - 1)/2];
return std::vector<double>(start, start + layerCount);
}
std::vector<double> result(layerCount);
double invN = 1.0/layerCount, sqrtN = std::sqrt(layerCount);
double p = 1 - invN;
double k = 1 + 4.5/sqrtN + 0.08*sqrtN;
double sum = 0;
for (int i = 0; i < layerCount; ++i) {
double x = i*invN;
double power = -x*(1 - p*std::exp(-x*k));
double length = std::pow(2, power);
result[i] = length;
sum += length;
}
double factor = 1/sum;
for (auto &r : result) r *= factor;
return result;
}
/** Approximate (optimal) bandwidth for a given number of layers
\diagram{box-stack-bandwidth.svg,Approximate main lobe width (bandwidth)}
*/
static constexpr double layersToBandwidth(int layers) {
return 1.58*(layers + 0.1);
}
/** Approximate (optimal) peak in the stop-band
\diagram{box-stack-peak.svg,Heuristic stop-band peak}
*/
static constexpr double layersToPeakDb(int layers) {
return 5 - layers*18;
}
/// Sets size using an optimal (heuristic at larger sizes) set of length ratios
void resize(int maxSize, int layerCount) {
resize(maxSize, optimalRatios(layerCount));
}
/// Sets the maximum (and current) impulse response length and explicit length ratios
template<class List>
auto resize(int maxSize, List ratios) -> decltype(void(std::begin(ratios)), void(std::end(ratios))) {
setupLayers(ratios);
for (auto &layer : layers) layer.filter.resize(0); // .set() will expand it later
_size = -1;
set(maxSize);
reset();
}
void resize(int maxSize, std::initializer_list<double> ratios) {
resize<const std::initializer_list<double> &>(maxSize, ratios);
}
/// Sets the impulse response length (does not reset if `size` ≤ `maxSize`)
void set(int size) {
if (layers.size() == 0) return; // meaningless
if (_size == size) return;
_size = size;
int order = size - 1;
int totalOrder = 0;
for (auto &layer : layers) {
double layerOrderFractional = layer.ratio*order;
int layerOrder = int(layerOrderFractional);
layer.length = layerOrder + 1;
layer.lengthError = layerOrder - layerOrderFractional;
totalOrder += layerOrder;
}
// Round some of them up, so the total is correct - this is O(N²), but `layers.size()` is small
while (totalOrder < order) {
int minIndex = 0;
double minError = layers[0].lengthError;
for (size_t i = 1; i < layers.size(); ++i) {
if (layers[i].lengthError < minError) {
minError = layers[i].lengthError;
minIndex = i;
}
}
layers[minIndex].length++;
layers[minIndex].lengthError += 1;
totalOrder++;
}
for (auto &layer : layers) layer.filter.set(layer.length);
}
/// Resets the filter
void reset(Sample fill=Sample()) {
for (auto &layer : layers) layer.filter.reset(fill);
}
Sample operator()(Sample v) {
for (auto &layer : layers) {
v = layer.filter(v);
}
return v;
}
};
/** Peak-hold filter.
\diagram{peak-hold.svg}
The size is variable, and can be changed instantly with `.set()`, or by using `.push()`/`.pop()` in an unbalanced way.
This has complexity O(1) every sample when the length remains constant (balanced `.push()`/`.pop()`, or using `filter(v)`), and amortised O(1) complexity otherwise. To avoid allocations while running, it pre-allocates a vector (not a `std::deque`) which determines the maximum length.
*/
template<typename Sample>
class PeakHold {
static constexpr Sample lowest = std::numeric_limits<Sample>::lowest();
int bufferMask;
std::vector<Sample> buffer;
int backIndex = 0, middleStart = 0, workingIndex = 0, middleEnd = 0, frontIndex = 0;
Sample frontMax = lowest, workingMax = lowest, middleMax = lowest;
public:
PeakHold(int maxLength) {
resize(maxLength);
}
int size() {
return frontIndex - backIndex;
}
void resize(int maxLength) {
int bufferLength = 1;
while (bufferLength < maxLength) bufferLength *= 2;
buffer.resize(bufferLength);
bufferMask = bufferLength - 1;
frontIndex = backIndex + maxLength;
reset();
}
void reset(Sample fill=lowest) {
int prevSize = size();
buffer.assign(buffer.size(), fill);
frontMax = workingMax = middleMax = lowest;
middleEnd = workingIndex = frontIndex = 0;
middleStart = middleEnd - (prevSize/2);
backIndex = frontIndex - prevSize;
}
/** Sets the size immediately.
Must be `0 <= newSize <= maxLength` (see constructor and `.resize()`).
Shrinking doesn't destroy information, and if you expand again (with `preserveCurrentPeak=false`), you will get the same output as before shrinking. Expanding when `preserveCurrentPeak` is enabled is destructive, re-writing its history such that the current output value is unchanged.*/
void set(int newSize, bool preserveCurrentPeak=false) {
while (size() < newSize) {
Sample &backPrev = buffer[backIndex&bufferMask];
--backIndex;
Sample &back = buffer[backIndex&bufferMask];
back = preserveCurrentPeak ? backPrev : std::max(back, backPrev);
}
while (size() > newSize) {
pop();
}
}
void push(Sample v) {
buffer[frontIndex&bufferMask] = v;
++frontIndex;
frontMax = std::max(frontMax, v);
}
void pop() {
if (backIndex == middleStart) {
// Move along the maximums
workingMax = lowest;
middleMax = frontMax;
frontMax = lowest;
int prevFrontLength = frontIndex - middleEnd;
int prevMiddleLength = middleEnd - middleStart;
if (prevFrontLength <= prevMiddleLength + 1) {
// Swap over simply
middleStart = middleEnd;
middleEnd = frontIndex;
workingIndex = middleEnd;
} else {
// The front is longer than the middle - only happens if unbalanced
// We don't move *all* of the front over, keeping half the surplus in the front
int middleLength = (frontIndex - middleStart)/2;
middleStart = middleEnd;
middleEnd += middleLength;
// Working index is close enough that it will be finished by the time the back is empty
int backLength = middleStart - backIndex;
int workingLength = std::min(backLength, middleEnd - middleStart);
workingIndex = middleStart + workingLength;
// Since the front was not completely consumed, we re-calculate the front's maximum
for (int i = middleEnd; i != frontIndex; ++i) {
frontMax = std::max(frontMax, buffer[i&bufferMask]);
}
// The index might not start at the end of the working block - compute the last bit immediately
for (int i = middleEnd - 1; i != workingIndex - 1; --i) {
buffer[i&bufferMask] = workingMax = std::max(workingMax, buffer[i&bufferMask]);
}
}
// Is the new back (previous middle) empty? Only happens if unbalanced
if (backIndex == middleStart) {
// swap over again (front's empty, no change)
workingMax = lowest;
middleMax = frontMax;
frontMax = lowest;
middleStart = workingIndex = middleEnd;
if (backIndex == middleStart) {
--backIndex; // Only happens if you pop from an empty list - fail nicely
}
}
buffer[frontIndex&bufferMask] = lowest; // In case of length 0, when everything points at this value
}
++backIndex;
if (workingIndex != middleStart) {
--workingIndex;
buffer[workingIndex&bufferMask] = workingMax = std::max(workingMax, buffer[workingIndex&bufferMask]);
}
}
Sample read() {
Sample backMax = buffer[backIndex&bufferMask];
return std::max(backMax, std::max(middleMax, frontMax));
}
// For simple use as a constant-length filter
Sample operator ()(Sample v) {
push(v);
pop();
return read();
}
};
/** Peak-decay filter with a linear shape and fixed-time return to constant value.
\diagram{peak-decay-linear.svg}
This is equivalent to a `BoxFilter` which resets itself whenever the output would be less than the input.
*/
template<typename Sample=double>
class PeakDecayLinear {
static constexpr Sample lowest = std::numeric_limits<Sample>::lowest();
PeakHold<Sample> peakHold;
Sample value = lowest;
Sample stepMultiplier = 1;
public:
PeakDecayLinear(int maxLength) : peakHold(maxLength) {
set(maxLength);
}
void resize(int maxLength) {
peakHold.resize(maxLength);
reset();
}
void set(double length) {
peakHold.set(std::ceil(length));
// Overshoot slightly but don't exceed 1
stepMultiplier = Sample(1.0001)/std::max(1.0001, length);
}
void reset(Sample start=lowest) {
peakHold.reset(start);
set(peakHold.size());
value = start;
}
Sample operator ()(Sample v) {
Sample peak = peakHold.read();
peakHold(v);
return value = std::max<Sample>(v, value + (v - peak)*stepMultiplier);
}
};
/** @} */
}} // signalsmith::envelopes::
#endif // include guard