-
Notifications
You must be signed in to change notification settings - Fork 6
/
pctPolynomialMLPFunction.h
214 lines (171 loc) · 6.36 KB
/
pctPolynomialMLPFunction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#ifndef __pctPolynomialMLPFunction_h
#define __pctPolynomialMLPFunction_h
#include "CLHEP/Units/PhysicalConstants.h"
#include "pctMostLikelyPathFunction.h"
#include "itkMath.h"
// C++11 does not guarantee that assert can be used in constexpr
// functions. This is a work-around for GCC 4.8, 4.9. Originating
// from Andrzej's C++ blog:
// https://akrzemi1.wordpress.com/2017/05/18/asserts-in-constexpr-functions/
#if defined NDEBUG
# define ITK_X_ASSERT(CHECK) void(0)
#else
# define ITK_X_ASSERT(CHECK) ((CHECK) ? void(0) : [] { assert(!#CHECK); }())
#endif
namespace pct
{
namespace Functor
{
namespace PolynomialMLP
{
static const double aunit = 1./(CLHEP::MeV*CLHEP::MeV);
// *** 200 MeV ***
// fill coefficient vectors for each available polynomial degree
// // polynomial order N = 0
// static const std::vector<double> bm_0 = {9.496308e-06};
// // polynomial order N = 1
// static const std::vector<double> bm_1 = {-1.055104e-07, 8.365792e-08};
// // polynomial order N = 2
// static const std::vector<double> bm_2 = {6.218903e-06, -8.183818e-08, 7.209602e-10};
// // polynomial order N = 3
// static const std::vector<double> bm_3 = {2.522468e-06, 1.119469e-07, -1.390729e-09, 6.132850e-12};
// // polynomial order N = 4
// static const std::vector<double> bm_4 = {4.562500e-06, -6.670635e-08, 2.116152e-09, -1.764070e-11, 5.178304e-14};
// // polynomial order N = 5
// static const std::vector<double> bm_5 = {3.474283e-06, 7.665043e-08, -2.265353e-09, 3.330223e-11, -1.979538e-13, 4.351773e-16};
// *** 180 MeV ***
// polynomial order N = 0
static const std::vector<double> bm_0 = {1.125895e-05};
// polynomial order N = 1
static const std::vector<double> bm_1 = {2.221018e-07, 1.176787e-07};
// polynomial order N = 2
static const std::vector<double> bm_2 = {7.256003e-06, -1.075769e-07, 1.200877e-09};
// polynomial order N = 3
static const std::vector<double> bm_3 = {3.279817e-06, 1.475374e-07, -2.201247e-09, 1.209155e-11};
// polynomial order N = 4
static const std::vector<double> bm_4 = {5.401888e-06, -7.991486e-08, 3.262799e-09, -3.323899e-11, 1.208325e-13};
// polynomial order N = 5
static const std::vector<double> bm_5 = {4.307328e-06, 9.657939e-08, -3.338966e-09, 6.069645e-11, -4.427153e-13, 1.201749e-15};
// ADD COMMENT HERE
class FactorsABCD
{
public:
static double GetA(const double uOut, const std::vector<double> bm)
{
double A = 0;
for(std::vector<int>::size_type i = 0; i != bm.size(); i++)
{
A += bm[i] / (i+1) * std::pow(uOut, i+1);
}
return A;
}
static double GetB(const double uOut, const std::vector<double> bm)
{
double B = 0;
for(std::vector<int>::size_type i = 0; i != bm.size(); i++)
{
B += bm[i] / (i+2) * std::pow(uOut, i+2);
}
return B;
}
static double GetC(const double uOut, const std::vector<double> bm)
{
double C = 0;
for(std::vector<int>::size_type i = 0; i != bm.size(); i++)
{
C += bm[i] / (i+1) / (i+2) * std::pow(uOut, i+2);
}
return C;
}
static double GetD(const double uOut, const std::vector<double> bm)
{
double D = 0;
for(std::vector<int>::size_type i = 0; i != bm.size(); i++)
{
D += bm[i] / (i+2) / (i+3) * std::pow(uOut, i+3);
}
return D;
}
};
class CoefficientsC
{
public:
static void GetValue(itk::Vector<double, 2>& CoefficientsC, const double uOut, const itk::Vector<double, 2> vIn, const itk::Vector<double, 2> vOut, const double A, const double B, const double C, const double D)
{
CoefficientsC[0] = (-B * (vOut[0] - vIn[0] - vIn[1] * uOut) + D * (vOut[1] - vIn[1])) / (A*D - B*C);
CoefficientsC[1] = (A * (vOut[0] - vIn[0] - vIn[1] * uOut) - C * (vOut[1] - vIn[1])) / (A*D - B*C);
}
};
} // end namespace PolynomialMLP
} // end namespace Functor
/** \class SchulteMLPFunction
* \brief See [Schulte, Med Phys, 2008].
*
* \ingroup Functions
*/
class ITK_EXPORT PolynomialMLPFunction:
public MostLikelyPathFunction<double>
{
public:
/** Standard class typedefs. */
typedef PolynomialMLPFunction Self;
typedef MostLikelyPathFunction<double> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Useful defines. */
typedef Superclass::VectorType VectorType;
/** Init the mlp parameters from the input and output directions and positions. */
virtual void Init(const VectorType posIn, const VectorType posOut, const VectorType dirIn, const VectorType dirOut) override;
/* Vectorised version of Evaluate function. */
virtual void Evaluate( std::vector<double> u, std::vector<double> &x, std::vector<double> &y ) override;
/** Evaluate the error (x,y) (equation 27) at depth z. */
void EvaluateError( const double u1, itk::Matrix<double, 2, 2> &error);
void SetPolynomialDegree( const int polydeg );
#ifdef MLP_TIMING
/** Print timing information */
virtual void PrintTiming(std::ostream& os) override;
#endif
protected:
/// Constructor
PolynomialMLPFunction();
PolynomialMLPFunction(const int polydeg);
/// Destructor
~PolynomialMLPFunction(){}
private:
PolynomialMLPFunction( const Self& ); //purposely not implemented
void operator=( const Self& ); //purposely not implemented
static constexpr std::uintmax_t
CalculateBinomialCoefficient(const std::uintmax_t n, const std::uintmax_t k) ITK_NOEXCEPT
{
return (k > n) ? (ITK_X_ASSERT(!"Out of range!"), 0)
: (k == 0) ? 1 : itk::Math::UnsignedProduct(n, CalculateBinomialCoefficient(n - 1, k - 1)) / k;
}
// parameters of the polynomial to describe 1/beta^2p^2 term
int m_PolynomialDegree;
int m_PolynomialDegreePlusThree;
std::vector<double> m_bm;
itk::Vector<double, 9> m_dm_x;
itk::Vector<double, 9> m_dm_y;
itk::Vector<double, 1> m_ScalarTest;
// vectors holding the constants c0 and c1
itk::Vector<double, 2> m_c_x;
itk::Vector<double, 2> m_c_y;
// Depth position at entrance and exit, only u1 is variable
double m_uOrigin;
double m_u0;
double m_u2;
// Entrance and exit parameters (equation 1)
itk::Vector<double, 2> m_x0;
itk::Vector<double, 2> m_x2;
itk::Vector<double, 2> m_y0;
itk::Vector<double, 2> m_y2;
#ifdef MLP_TIMING
itk::TimeProbe m_EvaluateProbe1;
itk::TimeProbe m_EvaluateProbe2;
#endif
};
} // end namespace pct
#include "pctPolynomialMLPFunction.txx"
#endif