forked from iamciera/lme4tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlme4_pvals.html
436 lines (379 loc) · 16.2 KB
/
lme4_pvals.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<style>
*{margin:0;padding:0;}
body {
font:13.34px helvetica,arial,freesans,clean,sans-serif;
color:black;
line-height:1.4em;
background-color: #F8F8F8;
padding: 0.7em;
}
p {
margin:1em 0;
line-height:1.5em;
}
table {
font-size:inherit;
font:100%;
margin:1em;
}
table th{border-bottom:1px solid #bbb;padding:.2em 1em;}
table td{border-bottom:1px solid #ddd;padding:.2em 1em;}
input[type=text],input[type=password],input[type=image],textarea{font:99% helvetica,arial,freesans,sans-serif;}
select,option{padding:0 .25em;}
optgroup{margin-top:.5em;}
pre,code{font:12px Monaco,"Courier New","DejaVu Sans Mono","Bitstream Vera Sans Mono",monospace;}
pre {
margin:1em 0;
font-size:12px;
background-color:#eee;
border:1px solid #ddd;
padding:5px;
line-height:1.5em;
color:#444;
overflow:auto;
-webkit-box-shadow:rgba(0,0,0,0.07) 0 1px 2px inset;
-webkit-border-radius:3px;
-moz-border-radius:3px;border-radius:3px;
}
pre code {
padding:0;
font-size:12px;
background-color:#eee;
border:none;
}
code {
font-size:12px;
background-color:#f8f8ff;
color:#444;
padding:0 .2em;
border:1px solid #dedede;
}
img{border:0;max-width:100%;}
abbr{border-bottom:none;}
a{color:#4183c4;text-decoration:none;}
a:hover{text-decoration:underline;}
a code,a:link code,a:visited code{color:#4183c4;}
h2,h3{margin:1em 0;}
h1,h2,h3,h4,h5,h6{border:0;}
h1{font-size:170%;border-top:4px solid #aaa;padding-top:.5em;margin-top:1.5em;}
h1:first-child{margin-top:0;padding-top:.25em;border-top:none;}
h2{font-size:150%;margin-top:1.5em;border-top:4px solid #e0e0e0;padding-top:.5em;}
h3{margin-top:1em;}
hr{border:1px solid #ddd;}
ul{margin:1em 0 1em 2em;}
ol{margin:1em 0 1em 2em;}
ul li,ol li{margin-top:.5em;margin-bottom:.5em;}
ul ul,ul ol,ol ol,ol ul{margin-top:0;margin-bottom:0;}
blockquote{margin:1em 0;border-left:5px solid #ddd;padding-left:.6em;color:#555;}
dt{font-weight:bold;margin-left:1em;}
dd{margin-left:2em;margin-bottom:1em;}
sup {
font-size: 0.83em;
vertical-align: super;
line-height: 0;
}
* {
-webkit-print-color-adjust: exact;
}
@media screen and (min-width: 914px) {
body {
width: 854px;
margin:0 auto;
}
}
@media print {
table, pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
</style>
<title>Exploring pvalue options for lme4 models</title>
</head>
<body>
<h1>Exploring pvalue options for lme4 models</h1>
<p>Julin Maloof
Initiated Jan 21, 2014</p>
<h2>The problem</h2>
<p>lme4 does not report p-values for fixed or random effects. The package that Dan Chitwood used, languageR, is out of date, has been shown to give unreliable results, and is picky about the lme4 version that it uses. There are several alternatives that we will explore here.</p>
<h2>load packages</h2>
<p>lme4 for model fitting. lmerTest and car for various hypothesis testing functions.
lme4 > 1.0 is required. If you haven't updated your R for a while you will need to.</p>
<p><code>r
library(lme4)
library(lmerTest)
library(car)
</code></p>
<h2>Read in the data</h2>
<p>Following Dan's example, we will read in the data and transform the abs_stom trait to give it a more normal distribution</p>
<p><code>r
stomdata <- read.delim("Modeling_example.txt")
</code></p>
<p><code>r
stomdata$trans_abs_stom <- sqrt(stomdata$abs_stom)
</code></p>
<p><code>r
head(stomdata)
</code></p>
<pre><code>## plant abs_stom epi_count il row tray col trans_abs_stom
## 1 A40 13.0 29.5 IL_4.1.1 J A D 3.606
## 2 C22 14.0 24.0 IL_9.3.1 B C A 3.742
## 3 O35 14.5 22.0 IL_7.5.5 E L E 3.808
## 4 Q36 15.0 25.5 IL_10.3 F N C 3.873
## 5 H4 15.5 28.5 IL_5.1 D F D 3.937
## 6 L21 15.5 34.0 IL_6.1 A J B 3.937
</code></pre>
<p><code>r
summary(stomdata)
</code></p>
<pre><code>## plant abs_stom epi_count il row
## A1 : 1 Min. :13.0 Min. :22.0 cvm82 : 27 B : 75
## A2 : 1 1st Qu.:24.5 1st Qu.:34.5 IL_1.1.2: 10 D : 74
## A20 : 1 Median :27.5 Median :37.5 IL_1.1.3: 10 E : 74
## A22 : 1 Mean :27.6 Mean :38.0 IL_1.3 : 10 G : 74
## A23 : 1 3rd Qu.:30.5 3rd Qu.:41.0 IL_1.4 : 10 I : 73
## A24 : 1 Max. :52.5 Max. :71.0 IL_10.1 : 10 C : 72
## (Other):721 (Other) :650 (Other):285
## tray col trans_abs_stom
## M : 50 A:149 Min. :3.61
## E : 48 B:131 1st Qu.:4.95
## G : 48 C:147 Median :5.24
## J : 48 D:152 Mean :5.23
## K : 48 E:148 3rd Qu.:5.52
## B : 47 Max. :7.25
## (Other):438
</code></pre>
<h2>create the full model</h2>
<p>Next we fit the fully specified model. Note that by adding the <code>arugment data=stomdata</code> to the lmer call that we can simplify the term specication (using names internal to the <code>stomdata</code> data frame)</p>
<p><code>r
model1 <- lmer(trans_abs_stom ~ il + (1 | tray) + (1 | row) + (1 | col), data = stomdata)
</code></p>
<h2>Assessing signficance of random effects</h2>
<p>We can use <code>rand()</code> in the lmerTest package to test the signficance of the random effects.</p>
<p><code>r
rand(model1) #depends on lmerTest package
</code></p>
<pre><code>## Analysis of Random effects Table:
## Chi.sq Chi.DF p.value
## (1 | tray) 63.02 1 2e-15 ***
## (1 | row) 14.33 1 2e-04 ***
## (1 | col) 3.99 1 0.05 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<h2>Alternative random effects testing.</h2>
<p>If you prefer to do this by comparing models, that also can be accomplished. lmerTest has an updated anova function.</p>
<p><code>r
model3 <- update(model1, . ~ . - (1 | row)) # remove the row term from the model.
anova(model1, model3)
</code></p>
<pre><code>## Data: stomdata
## Models:
## ..1: trans_abs_stom ~ il + (1 | tray) + (1 | col)
## object: trans_abs_stom ~ il + (1 | tray) + (1 | row) + (1 | col)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## ..1 78 925 1283 -385 769
## object 79 913 1275 -377 755 14.3 1 0.00015 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<h2>Assessing signficance of fixed effects</h2>
<p>The anova function from lmerTest can also be used to test the fixed effect term(s).</p>
<p><code>r
anova(model1) #default is like a SAS type 3.
</code></p>
<pre><code>## Analysis of Variance Table of type 3 with Satterthwaite
## approximation for degrees of freedom
## Df Sum Sq Mean Sq F value Denom Pr(>F)
## il 74 39.8 0.538 3.13 630 1.1e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<p><code>r
anova(model1, type = 1) #Alternative: SAS type 1.
</code></p>
<pre><code>## Analysis of Variance Table of type 1 with Satterthwaite
## approximation for degrees of freedom
## Df Sum Sq Mean Sq F value Denom Pr(>F)
## il 74 39.8 0.538 3.13 631 1.1e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<p><code>r
anova(model1, ddf = "Kenward-Roger") #Alternative way to calculate the degrees of freedom.
</code></p>
<pre><code>## Analysis of Variance Table of type 3 with Kenward-Roger
## approximation for degrees of freedom
## Df Sum Sq Mean Sq F value Denom Pr(>F)
## il 74 39.8 0.538 3.12 628 1.4e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<h2>Assessing signficance of fixed effect factor levels</h2>
<p>What if you want to test the signficance of each factor level (each IL in this case...)? Once lmerTest has been loaded, then the summary function works like you would want it to.</p>
<p><code>r
summary(model1) # gives p-values for standard lme comparisions (each against the reference)
</code></p>
<pre><code>## Linear mixed model fit by REML ['merModLmerTest']
## Formula: trans_abs_stom ~ il + (1 | tray) + (1 | row) + (1 | col)
## Data: stomdata
##
## REML criterion at convergence: 917.2
##
## Random effects:
## Groups Name Variance Std.Dev.
## tray (Intercept) 0.02385 0.1544
## row (Intercept) 0.00740 0.0860
## col (Intercept) 0.00268 0.0517
## Residual 0.17217 0.4149
## Number of obs: 727, groups: tray, 16; row, 10; col, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.32e+00 9.66e-02 1.60e+02 55.05 < 2e-16 ***
## ilIL_1.1 3.32e-02 1.63e-01 6.35e+02 0.20 0.83829
## ilIL_1.1.2 1.56e-01 1.56e-01 6.33e+02 1.00 0.31604
## ilIL_1.1.3 -1.26e-01 1.55e-01 6.32e+02 -0.81 0.41726
## ilIL_1.2 3.67e-03 1.69e-01 6.30e+02 0.02 0.98264
## ilIL_1.3 -1.30e-01 1.56e-01 6.33e+02 -0.83 0.40469
## ilIL_1.4 -8.43e-02 1.56e-01 6.34e+02 -0.54 0.58937
## ilIL_1.4.18 1.42e-01 1.70e-01 6.36e+02 0.84 0.40340
## ilIL_10.1 -4.07e-02 1.55e-01 6.31e+02 -0.26 0.79333
## ilIL_10.1.1 -1.02e-01 1.62e-01 6.32e+02 -0.63 0.52645
## ilIL_10.2 3.49e-01 1.62e-01 6.33e+02 2.16 0.03121 *
## ilIL_10.2.2 -9.50e-03 1.55e-01 6.29e+02 -0.06 0.95104
## ilIL_10.3 -7.18e-01 1.55e-01 6.32e+02 -4.62 4.7e-06 ***
## ilIL_11.1 4.51e-02 1.57e-01 6.36e+02 0.29 0.77328
## ilIL_11.2 -1.50e-01 1.61e-01 6.31e+02 -0.93 0.35206
## ilIL_11.3 -1.16e-01 1.62e-01 6.34e+02 -0.72 0.47450
## ilIL_11.4 -2.11e-01 1.63e-01 6.36e+02 -1.29 0.19659
## ilIL_11.4.1 -1.96e-01 1.56e-01 6.34e+02 -1.26 0.20941
## ilIL_12.1 -1.88e-02 1.61e-01 6.32e+02 -0.12 0.90732
## ilIL_12.1.1 2.61e-02 1.56e-01 6.32e+02 0.17 0.86701
## ilIL_12.2 -1.22e-01 1.56e-01 6.33e+02 -0.79 0.43271
## ilIL_12.3 -2.73e-02 1.55e-01 6.30e+02 -0.18 0.86010
## ilIL_12.3.1 6.64e-02 1.55e-01 6.33e+02 0.43 0.66960
## ilIL_12.4 -9.05e-02 1.61e-01 6.31e+02 -0.56 0.57501
## ilIL_12.4.1 -1.18e-01 1.62e-01 6.32e+02 -0.73 0.46414
## ilIL_2.1 -3.21e-02 1.69e-01 6.32e+02 -0.19 0.84947
## ilIL_2.1.1 2.79e-02 3.09e-01 6.34e+02 0.09 0.92824
## ilIL_2.2 -1.51e-01 1.70e-01 6.34e+02 -0.89 0.37512
## ilIL_2.3 -1.34e-01 1.63e-01 6.36e+02 -0.82 0.41151
## ilIL_2.4 -1.36e-01 1.62e-01 6.35e+02 -0.83 0.40420
## ilIL_2.5 -5.75e-01 1.62e-01 6.34e+02 -3.55 0.00042 ***
## ilIL_2.6 -2.20e-01 1.56e-01 6.33e+02 -1.41 0.15806
## ilIL_2.6.5 4.60e-02 1.62e-01 6.34e+02 0.28 0.77630
## ilIL_3.1 -1.50e-01 1.55e-01 6.31e+02 -0.96 0.33531
## ilIL_3.2 -2.90e-01 1.56e-01 6.34e+02 -1.86 0.06390 .
## ilIL_3.3 -9.24e-05 1.55e-01 6.31e+02 0.00 0.99953
## ilIL_3.4 -1.03e-02 1.56e-01 6.33e+02 -0.07 0.94724
## ilIL_3.5 5.53e-01 1.61e-01 6.31e+02 3.42 0.00066 ***
## ilIL_4.1 1.16e-01 1.57e-01 6.36e+02 0.74 0.45999
## ilIL_4.1.1 -4.28e-01 1.62e-01 6.34e+02 -2.63 0.00867 **
## ilIL_4.2 -1.36e-02 1.57e-01 6.36e+02 -0.09 0.93080
## ilIL_4.3 5.06e-02 1.69e-01 6.32e+02 0.30 0.76467
## ilIL_4.3.2 -5.26e-01 1.56e-01 6.33e+02 -3.37 0.00079 ***
## ilIL_4.4 1.13e-01 1.55e-01 6.32e+02 0.73 0.46635
## ilIL_5.1 -3.05e-02 1.55e-01 6.29e+02 -0.20 0.84387
## ilIL_5.2 -1.85e-01 1.61e-01 6.31e+02 -1.14 0.25321
## ilIL_5.3 -3.50e-01 1.56e-01 6.34e+02 -2.24 0.02512 *
## ilIL_5.4 2.75e-02 1.62e-01 6.34e+02 0.17 0.86545
## ilIL_5.5 -2.79e-01 1.56e-01 6.33e+02 -1.79 0.07366 .
## ilIL_6.1 -5.04e-01 1.56e-01 6.34e+02 -3.23 0.00130 **
## ilIL_6.2 2.69e-02 1.56e-01 6.32e+02 0.17 0.86280
## ilIL_6.3 5.32e-02 1.56e-01 6.34e+02 0.34 0.73337
## ilIL_6.4 -3.48e-01 1.57e-01 6.37e+02 -2.22 0.02670 *
## ilIL_7.1 -3.94e-01 1.55e-01 6.31e+02 -2.54 0.01126 *
## ilIL_7.2 -1.29e-01 1.55e-01 6.31e+02 -0.83 0.40532
## ilIL_7.3 -6.88e-02 1.56e-01 6.34e+02 -0.44 0.65968
## ilIL_7.4.1 -5.32e-03 1.56e-01 6.32e+02 -0.03 0.97279
## ilIL_7.5 7.33e-02 1.55e-01 6.30e+02 0.47 0.63746
## ilIL_7.5.5 -8.02e-02 1.55e-01 6.32e+02 -0.52 0.60603
## ilIL_8.1 6.66e-02 1.56e-01 6.34e+02 0.43 0.66972
## ilIL_8.1.1 -2.21e-01 1.55e-01 6.31e+02 -1.43 0.15422
## ilIL_8.1.5 2.88e-01 1.55e-01 6.31e+02 1.86 0.06366 .
## ilIL_8.2 2.56e-01 1.55e-01 6.32e+02 1.65 0.09943 .
## ilIL_8.2.1 4.46e-01 1.55e-01 6.31e+02 2.88 0.00416 **
## ilIL_8.3 -3.01e-01 1.56e-01 6.33e+02 -1.93 0.05444 .
## ilIL_8.3.1 -4.26e-01 1.55e-01 6.32e+02 -2.74 0.00627 **
## ilIL_9.1 -5.04e-01 1.55e-01 6.32e+02 -3.24 0.00124 **
## ilIL_9.1.2 4.77e-02 1.62e-01 6.33e+02 0.29 0.76885
## ilIL_9.1.3 -1.47e-01 1.56e-01 6.32e+02 -0.94 0.34579
## ilIL_9.2 4.05e-01 1.56e-01 6.33e+02 2.60 0.00951 **
## ilIL_9.2.5 1.73e-01 1.69e-01 6.32e+02 1.02 0.30798
## ilIL_9.2.6 -1.85e-01 1.56e-01 6.33e+02 -1.19 0.23487
## ilIL_9.3 -6.03e-01 1.56e-01 6.35e+02 -3.86 0.00012 ***
## ilIL_9.3.1 -4.18e-01 1.69e-01 6.32e+02 -2.47 0.01367 *
## ilIL_9.3.2 -2.52e-01 1.55e-01 6.31e+02 -1.62 0.10472
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
</code></pre>
<pre><code>##
## Correlation matrix not shown by default, as p = 75 > 20.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
</code></pre>
<h2>Making specific comparisions among factor levels</h2>
<p>summary() compared everything to the reference level (M82 in this case). You can use the functions in the car package to make other comparisons (ie IL vs IL).</p>
<p><code>r
linearHypothesis(model1, "ilIL_1.1.2 = ilIL_1.1") #compare IL_1.1.2 to IL_1.1. Note that you have to use the factor names as they are listed in the summary table. Hence 'ilIL_1.1.2...'
</code></p>
<pre><code>## Linear hypothesis test
##
## Hypothesis:
## - ilIL_1.1 + ilIL_1.1.2 = 0
##
## Model 1: restricted model
## Model 2: trans_abs_stom ~ il + (1 | tray) + (1 | row) + (1 | col)
##
## Df Chisq Pr(>Chisq)
## 1
## 2 1 0.41 0.52
</code></pre>
<p>to test the hypothesis that multiple ILs are equivalent:</p>
<p><code>r
linearHypothesis(model1, c("ilIL_1.1.2 - ilIL_1.1", "ilIL_9.3 - ilIL_9.3.1"))
</code></p>
<pre><code>## Linear hypothesis test
##
## Hypothesis:
## - ilIL_1.1 + ilIL_1.1.2 = 0
## ilIL_9.3 - ilIL_9.3.1 = 0
##
## Model 1: restricted model
## Model 2: trans_abs_stom ~ il + (1 | tray) + (1 | row) + (1 | col)
##
## Df Chisq Pr(>Chisq)
## 1
## 2 2 1.27 0.53
</code></pre>
<p>there are many other ways to specify the comparisions. see <code>?linearHypothesis</code> for more details.</p>
<h2>Confidence Intervals</h2>
<p>We can calculate confidence intervals on our coefficients using functions now available in the lme4 package itself. Two methods are shown below.</p>
<p><code>r
model1.confint <- confint(model1) #uses profile method. This is a likelihood based method. See ?confint.merMod for details. Takes 138 seconds on 2013 Macbook Pro
</code></p>
<pre><code>## Computing profile confidence intervals ...
</code></pre>
<p><code>r
model1.confint.boot <- confint(model1, method = "boot") #bootstrapped confidence intervals. Takes 130 seconds on 2013 Macbook Pro
</code></p>
<pre><code>## Computing bootstrap confidence intervals ...
</code></pre>
<pre><code>## Warning: diag(.) had 0 or NA entries; non-finite result is doubtful
## Warning: some bootstrap runs failed (1/500)
</code></pre>
<h2>compare them</h2>
<p><code>r
plot(model1.confint[-1:-5, 1], model1.confint.boot[-1:-5, 1]) #pretty similar in this case.
</code></p>
<p><img src="figure/unnamed-chunk-6.png" alt="plot of chunk unnamed-chunk-6" /></p>
</body>
</html>