forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
433 lines (346 loc) · 14.1 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import importlib.util
import io
import logging
import os
import re
import subprocess
import sys
from shutil import which
from typing import Dict, List
import torch
from packaging.version import Version, parse
from setuptools import Extension, find_packages, setup
from setuptools.command.build_ext import build_ext
from torch.utils.cpp_extension import CUDA_HOME
def load_module_from_path(module_name, path):
spec = importlib.util.spec_from_file_location(module_name, path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
ROOT_DIR = os.path.dirname(__file__)
logger = logging.getLogger(__name__)
# cannot import envs directly because it depends on vllm,
# which is not installed yet
envs = load_module_from_path('envs', os.path.join(ROOT_DIR, 'vllm', 'envs.py'))
VLLM_TARGET_DEVICE = envs.VLLM_TARGET_DEVICE
# vLLM only supports Linux platform
assert sys.platform.startswith(
"linux"), "vLLM only supports Linux platform (including WSL)."
MAIN_CUDA_VERSION = "12.1"
def is_sccache_available() -> bool:
return which("sccache") is not None
def is_ccache_available() -> bool:
return which("ccache") is not None
def is_ninja_available() -> bool:
return which("ninja") is not None
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix):]
return text
class CMakeExtension(Extension):
def __init__(self, name: str, cmake_lists_dir: str = '.', **kwa) -> None:
super().__init__(name, sources=[], **kwa)
self.cmake_lists_dir = os.path.abspath(cmake_lists_dir)
class cmake_build_ext(build_ext):
# A dict of extension directories that have been configured.
did_config: Dict[str, bool] = {}
#
# Determine number of compilation jobs and optionally nvcc compile threads.
#
def compute_num_jobs(self):
# `num_jobs` is either the value of the MAX_JOBS environment variable
# (if defined) or the number of CPUs available.
num_jobs = envs.MAX_JOBS
if num_jobs is not None:
num_jobs = int(num_jobs)
logger.info("Using MAX_JOBS=%d as the number of jobs.", num_jobs)
else:
try:
# os.sched_getaffinity() isn't universally available, so fall
# back to os.cpu_count() if we get an error here.
num_jobs = len(os.sched_getaffinity(0))
except AttributeError:
num_jobs = os.cpu_count()
nvcc_threads = None
if _is_cuda() and get_nvcc_cuda_version() >= Version("11.2"):
# `nvcc_threads` is either the value of the NVCC_THREADS
# environment variable (if defined) or 1.
# when it is set, we reduce `num_jobs` to avoid
# overloading the system.
nvcc_threads = envs.NVCC_THREADS
if nvcc_threads is not None:
nvcc_threads = int(nvcc_threads)
logger.info(
"Using NVCC_THREADS=%d as the number of nvcc threads.",
nvcc_threads)
else:
nvcc_threads = 1
num_jobs = max(1, num_jobs // nvcc_threads)
return num_jobs, nvcc_threads
#
# Perform cmake configuration for a single extension.
#
def configure(self, ext: CMakeExtension) -> None:
# If we've already configured using the CMakeLists.txt for
# this extension, exit early.
if ext.cmake_lists_dir in cmake_build_ext.did_config:
return
cmake_build_ext.did_config[ext.cmake_lists_dir] = True
# Select the build type.
# Note: optimization level + debug info are set by the build type
default_cfg = "Debug" if self.debug else "RelWithDebInfo"
cfg = envs.CMAKE_BUILD_TYPE or default_cfg
# where .so files will be written, should be the same for all extensions
# that use the same CMakeLists.txt.
outdir = os.path.abspath(
os.path.dirname(self.get_ext_fullpath(ext.name)))
cmake_args = [
'-DCMAKE_BUILD_TYPE={}'.format(cfg),
'-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={}'.format(outdir),
'-DCMAKE_ARCHIVE_OUTPUT_DIRECTORY={}'.format(self.build_temp),
'-DVLLM_TARGET_DEVICE={}'.format(VLLM_TARGET_DEVICE),
]
verbose = envs.VERBOSE
if verbose:
cmake_args += ['-DCMAKE_VERBOSE_MAKEFILE=ON']
if is_sccache_available():
cmake_args += [
'-DCMAKE_CXX_COMPILER_LAUNCHER=sccache',
'-DCMAKE_CUDA_COMPILER_LAUNCHER=sccache',
]
elif is_ccache_available():
cmake_args += [
'-DCMAKE_CXX_COMPILER_LAUNCHER=ccache',
'-DCMAKE_CUDA_COMPILER_LAUNCHER=ccache',
]
# Pass the python executable to cmake so it can find an exact
# match.
cmake_args += ['-DVLLM_PYTHON_EXECUTABLE={}'.format(sys.executable)]
if _install_punica():
cmake_args += ['-DVLLM_INSTALL_PUNICA_KERNELS=ON']
#
# Setup parallelism and build tool
#
num_jobs, nvcc_threads = self.compute_num_jobs()
if nvcc_threads:
cmake_args += ['-DNVCC_THREADS={}'.format(nvcc_threads)]
if is_ninja_available():
build_tool = ['-G', 'Ninja']
cmake_args += [
'-DCMAKE_JOB_POOL_COMPILE:STRING=compile',
'-DCMAKE_JOB_POOLS:STRING=compile={}'.format(num_jobs),
]
else:
# Default build tool to whatever cmake picks.
build_tool = []
subprocess.check_call(
['cmake', ext.cmake_lists_dir, *build_tool, *cmake_args],
cwd=self.build_temp)
def build_extensions(self) -> None:
# Ensure that CMake is present and working
try:
subprocess.check_output(['cmake', '--version'])
except OSError as e:
raise RuntimeError('Cannot find CMake executable') from e
# Create build directory if it does not exist.
if not os.path.exists(self.build_temp):
os.makedirs(self.build_temp)
targets = []
# Build all the extensions
for ext in self.extensions:
self.configure(ext)
targets.append(remove_prefix(ext.name, "vllm."))
num_jobs, _ = self.compute_num_jobs()
build_args = [
"--build",
".",
f"-j={num_jobs}",
*[f"--target={name}" for name in targets],
]
subprocess.check_call(["cmake", *build_args], cwd=self.build_temp)
def _is_cuda() -> bool:
return VLLM_TARGET_DEVICE == "cuda" \
and torch.version.cuda is not None \
and not _is_neuron()
def _is_hip() -> bool:
return (VLLM_TARGET_DEVICE == "cuda"
or VLLM_TARGET_DEVICE == "rocm") and torch.version.hip is not None
def _is_neuron() -> bool:
torch_neuronx_installed = True
try:
subprocess.run(["neuron-ls"], capture_output=True, check=True)
except (FileNotFoundError, PermissionError, subprocess.CalledProcessError):
torch_neuronx_installed = False
return torch_neuronx_installed or envs.VLLM_BUILD_WITH_NEURON
def _is_cpu() -> bool:
return VLLM_TARGET_DEVICE == "cpu"
def _install_punica() -> bool:
return envs.VLLM_INSTALL_PUNICA_KERNELS
def get_hipcc_rocm_version():
# Run the hipcc --version command
result = subprocess.run(['hipcc', '--version'],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True)
# Check if the command was executed successfully
if result.returncode != 0:
print("Error running 'hipcc --version'")
return None
# Extract the version using a regular expression
match = re.search(r'HIP version: (\S+)', result.stdout)
if match:
# Return the version string
return match.group(1)
else:
print("Could not find HIP version in the output")
return None
def get_neuronxcc_version():
import sysconfig
site_dir = sysconfig.get_paths()["purelib"]
version_file = os.path.join(site_dir, "neuronxcc", "version",
"__init__.py")
# Check if the command was executed successfully
with open(version_file, "rt") as fp:
content = fp.read()
# Extract the version using a regular expression
match = re.search(r"__version__ = '(\S+)'", content)
if match:
# Return the version string
return match.group(1)
else:
raise RuntimeError("Could not find HIP version in the output")
def get_nvcc_cuda_version() -> Version:
"""Get the CUDA version from nvcc.
Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py
"""
assert CUDA_HOME is not None, "CUDA_HOME is not set"
nvcc_output = subprocess.check_output([CUDA_HOME + "/bin/nvcc", "-V"],
universal_newlines=True)
output = nvcc_output.split()
release_idx = output.index("release") + 1
nvcc_cuda_version = parse(output[release_idx].split(",")[0])
return nvcc_cuda_version
def get_path(*filepath) -> str:
return os.path.join(ROOT_DIR, *filepath)
def find_version(filepath: str) -> str:
"""Extract version information from the given filepath.
Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py
"""
with open(filepath) as fp:
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]",
fp.read(), re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
def get_vllm_version() -> str:
version = find_version(get_path("vllm", "__init__.py"))
if _is_cuda():
cuda_version = str(get_nvcc_cuda_version())
if cuda_version != MAIN_CUDA_VERSION:
cuda_version_str = cuda_version.replace(".", "")[:3]
version += f"+cu{cuda_version_str}"
elif _is_hip():
# Get the HIP version
hipcc_version = get_hipcc_rocm_version()
if hipcc_version != MAIN_CUDA_VERSION:
rocm_version_str = hipcc_version.replace(".", "")[:3]
version += f"+rocm{rocm_version_str}"
elif _is_neuron():
# Get the Neuron version
neuron_version = str(get_neuronxcc_version())
if neuron_version != MAIN_CUDA_VERSION:
neuron_version_str = neuron_version.replace(".", "")[:3]
version += f"+neuron{neuron_version_str}"
elif _is_cpu():
version += "+cpu"
else:
raise RuntimeError("Unknown runtime environment")
return version
def read_readme() -> str:
"""Read the README file if present."""
p = get_path("README.md")
if os.path.isfile(p):
return io.open(get_path("README.md"), "r", encoding="utf-8").read()
else:
return ""
def get_requirements() -> List[str]:
"""Get Python package dependencies from requirements.txt."""
def _read_requirements(filename: str) -> List[str]:
with open(get_path(filename)) as f:
requirements = f.read().strip().split("\n")
resolved_requirements = []
for line in requirements:
if line.startswith("-r "):
resolved_requirements += _read_requirements(line.split()[1])
else:
resolved_requirements.append(line)
return resolved_requirements
if _is_cuda():
requirements = _read_requirements("requirements-cuda.txt")
cuda_major, cuda_minor = torch.version.cuda.split(".")
modified_requirements = []
for req in requirements:
if ("vllm-flash-attn" in req
and not (cuda_major == "12" and cuda_minor == "1")):
# vllm-flash-attn is built only for CUDA 12.1.
# Skip for other versions.
continue
modified_requirements.append(req)
requirements = modified_requirements
elif _is_hip():
requirements = _read_requirements("requirements-rocm.txt")
elif _is_neuron():
requirements = _read_requirements("requirements-neuron.txt")
elif _is_cpu():
requirements = _read_requirements("requirements-cpu.txt")
else:
raise ValueError(
"Unsupported platform, please use CUDA, ROCm, Neuron, or CPU.")
return requirements
ext_modules = []
if _is_cuda() or _is_hip():
ext_modules.append(CMakeExtension(name="vllm._moe_C"))
if not _is_neuron():
ext_modules.append(CMakeExtension(name="vllm._C"))
if _install_punica():
ext_modules.append(CMakeExtension(name="vllm._punica_C"))
package_data = {
"vllm": ["py.typed", "model_executor/layers/fused_moe/configs/*.json"]
}
if envs.VLLM_USE_PRECOMPILED:
ext_modules = []
package_data["vllm"].append("*.so")
setup(
name="vllm",
version=get_vllm_version(),
author="vLLM Team",
license="Apache 2.0",
description=("A high-throughput and memory-efficient inference and "
"serving engine for LLMs"),
long_description=read_readme(),
long_description_content_type="text/markdown",
url="https://github.com/vllm-project/vllm",
project_urls={
"Homepage": "https://github.com/vllm-project/vllm",
"Documentation": "https://vllm.readthedocs.io/en/latest/",
},
classifiers=[
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"License :: OSI Approved :: Apache Software License",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
packages=find_packages(exclude=("benchmarks", "csrc", "docs", "examples",
"tests*")),
python_requires=">=3.8",
install_requires=get_requirements(),
ext_modules=ext_modules,
extras_require={
"tensorizer": ["tensorizer>=2.9.0"],
},
cmdclass={"build_ext": cmake_build_ext} if not _is_neuron() else {},
package_data=package_data,
)