|
| 1 | +from math import log |
| 2 | +import os |
| 3 | +from matplotlib.tri.triinterpolate import LinearTriInterpolator |
| 4 | +import numpy as np |
| 5 | +from functools import partial |
| 6 | +import sys |
| 7 | +from pathlib import Path |
| 8 | +from rich.console import Console |
| 9 | +from rich.table import Table |
| 10 | +sys.path.append(str(Path(os.path.abspath(__file__)).parent.parent)) |
| 11 | +from utils import * |
| 12 | + |
| 13 | +class LinearChainConditionalRandomField: |
| 14 | + def __init__(self, feature_funcs, trans_feature_funcs, sequence_length, n_x, n_y, max_iteration=100, verbose=False): |
| 15 | + """ |
| 16 | + `feature_funcs` are a group of functions s(y_i, X, i) in a list |
| 17 | + `trans_feature_funcs` are a group of functions t(y_{i-1}, y_i, X, i) in a list |
| 18 | + `sequence_length` is the length of each input sequence |
| 19 | + `n_x` is the number of possible values of each item in a sequence x |
| 20 | + `n_y` is the number of possible values of each item in a sequence y |
| 21 | + """ |
| 22 | + self.feature_funcs = feature_funcs |
| 23 | + self.trans_feature_funcs = trans_feature_funcs |
| 24 | + self.n_x = n_x |
| 25 | + self.n_y = n_y |
| 26 | + self.sequence_length = sequence_length |
| 27 | + self.max_iteration = max_iteration |
| 28 | + self.verbose = verbose |
| 29 | + |
| 30 | + def get_trans(self, x): |
| 31 | + """get transition matrix given observed sequence x""" |
| 32 | + trans_feature = np.zeros([self.sequence_length, self.n_y, self.n_y]) |
| 33 | + for i in range(self.sequence_length): |
| 34 | + for y_i_1 in range(self.n_y): |
| 35 | + for y_i in range(self.n_y): |
| 36 | + for j, func in enumerate(self.used_feature_funcs): |
| 37 | + trans_feature[i, y_i_1, y_i] += self.w_feature_funcs[j] * func(y_i, x, i) |
| 38 | + if i > 0: |
| 39 | + for y_i_1 in range(self.n_y): |
| 40 | + for y_i in range(self.n_y): |
| 41 | + for j, func in enumerate(self.used_trans_feature_funcs): |
| 42 | + trans_feature[i, y_i_1, y_i] += self.w_trans_feature_funcs[j] * func(y_i_1, y_i, x, i) |
| 43 | + return np.exp(trans_feature) |
| 44 | + |
| 45 | + def fit(self, X, Y): |
| 46 | + """ |
| 47 | + X is a two dimensional matrix of observation sequence |
| 48 | + Y is a two dimensional matrix of hidden state sequence |
| 49 | + optimize weights by Improved Iterative Scaling |
| 50 | + """ |
| 51 | + E_feature = np.zeros(len(self.feature_funcs)) |
| 52 | + E_trans_feature = np.zeros(len(self.trans_feature_funcs)) |
| 53 | + |
| 54 | + # Because each x is a sequence, it's vector space is too large to iterate. |
| 55 | + # We need to store all the possible sequence x during the training time |
| 56 | + # and only iterate over existing x. |
| 57 | + p_x = {tuple(x): 0. for x in X} |
| 58 | + |
| 59 | + for x, y in zip(X, Y): |
| 60 | + x_key = tuple(x) |
| 61 | + p_x[x_key] += 1 / len(X) |
| 62 | + for i, yi in enumerate(y): |
| 63 | + for j, func in enumerate(self.feature_funcs): |
| 64 | + E_feature[j] += func(yi, x, i) / len(X) |
| 65 | + for i in range(1, self.sequence_length): |
| 66 | + yi_1, yi = y[i - 1], y[i] |
| 67 | + for j, func in enumerate(self.trans_feature_funcs): |
| 68 | + E_trans_feature[j] += func(yi_1, yi, x, i) / len(X) |
| 69 | + |
| 70 | + # features that don't show in training data are useless, filter them |
| 71 | + self.used_feature_funcs = [func for E, func in zip(E_feature, self.feature_funcs) if E != 0] |
| 72 | + self.used_trans_feature_funcs = [func for E, func in zip(E_trans_feature, self.trans_feature_funcs) if E != 0] |
| 73 | + E_feature = E_feature[E_feature.nonzero()] |
| 74 | + E_trans_feature = E_trans_feature[E_trans_feature.nonzero()] |
| 75 | + self.w_feature_funcs = np.zeros(len(self.used_feature_funcs)) |
| 76 | + self.w_trans_feature_funcs = np.zeros(len(self.used_trans_feature_funcs)) |
| 77 | + |
| 78 | + # pre-calculate all the possible values of feature functions |
| 79 | + feature = np.zeros([len(self.used_feature_funcs), len(p_x), self.sequence_length, self.n_y]) |
| 80 | + trans_feature = np.zeros([len(self.used_trans_feature_funcs), len(p_x), self.sequence_length, self.n_y, self.n_y]) |
| 81 | + for x_i, x_key in enumerate(p_x): |
| 82 | + x = np.array(x_key) |
| 83 | + for func_i, func in enumerate(self.used_trans_feature_funcs): |
| 84 | + for i in range(1, self.sequence_length): |
| 85 | + for y_i_1 in range(self.n_y): |
| 86 | + for y_i in range(self.n_y): |
| 87 | + trans_feature[func_i, x_i, i, y_i_1, y_i] = func(y_i_1, y_i, x, i) |
| 88 | + for func_i, func in enumerate(self.used_feature_funcs): |
| 89 | + for i in range(self.sequence_length): |
| 90 | + for y_i in range(self.n_y): |
| 91 | + feature[func_i, x_i, i, y_i] = func(y_i, x, i) |
| 92 | + |
| 93 | + # pre-calculate the max number of features, given x |
| 94 | + max_feature = np.zeros(len(p_x), dtype=int) |
| 95 | + sum_trans_feature = trans_feature.sum(axis=0) |
| 96 | + sum_feature = feature.sum(axis=0) |
| 97 | + for x_i, x_key in enumerate(p_x): |
| 98 | + cur_max_feature = np.zeros(self.n_y) |
| 99 | + for i in range(self.sequence_length): |
| 100 | + cur_max_feature = (cur_max_feature[:, None] + sum_trans_feature[x_i, i]).max(axis=0) + sum_feature[x_i, i] |
| 101 | + max_feature[x_i] = cur_max_feature.max() |
| 102 | + n_coef = max(max_feature) + 1 |
| 103 | + |
| 104 | + # train |
| 105 | + for iteration in range(self.max_iteration): |
| 106 | + if self.verbose: |
| 107 | + print(f'Iteration {iteration} starts...') |
| 108 | + loss = 0. |
| 109 | + for funcs, w, E_experience in zip( |
| 110 | + [self.used_feature_funcs, self.used_trans_feature_funcs], |
| 111 | + [self.w_feature_funcs, self.w_trans_feature_funcs], |
| 112 | + [E_feature, E_trans_feature]): |
| 113 | + for func_i in range(len(funcs)): |
| 114 | + # if funcs is self.used_trans_feature_funcs: |
| 115 | + coef = np.zeros(n_coef) |
| 116 | + # only iterater over possible x |
| 117 | + for x_i, x_key in enumerate(p_x): |
| 118 | + cur_p_x = p_x[x_key] |
| 119 | + x = np.array(x_key) |
| 120 | + |
| 121 | + trans = self.get_trans(x) |
| 122 | + # forward algorithm |
| 123 | + cur_prob = np.ones(self.n_y) |
| 124 | + forward_prob = np.zeros([self.sequence_length + 1, self.n_y]) |
| 125 | + forward_prob[0] = cur_prob |
| 126 | + for i in range(self.sequence_length): |
| 127 | + cur_prob = cur_prob @ trans[i] |
| 128 | + forward_prob[i + 1] = cur_prob |
| 129 | + # backward algorithm |
| 130 | + cur_prob = np.ones(self.n_y) |
| 131 | + backward_prob = np.zeros([self.sequence_length + 1, self.n_y]) |
| 132 | + backward_prob[-1] = cur_prob |
| 133 | + for i in range(self.sequence_length - 1, -1, -1): |
| 134 | + cur_prob = trans[i] @ cur_prob |
| 135 | + backward_prob[i] = cur_prob |
| 136 | + |
| 137 | + if iteration < 10: |
| 138 | + np.testing.assert_almost_equal( |
| 139 | + forward_prob[-1].sum(), |
| 140 | + backward_prob[0].sum() |
| 141 | + ) |
| 142 | + for i in range(1, self.sequence_length + 1): |
| 143 | + np.testing.assert_almost_equal( |
| 144 | + forward_prob[i] @ backward_prob[i], |
| 145 | + forward_prob[-1].sum() |
| 146 | + ) |
| 147 | + for i in range(0, self.sequence_length): |
| 148 | + np.testing.assert_almost_equal( |
| 149 | + (np.outer(forward_prob[i], backward_prob[i + 1]) * trans[i]).sum(), |
| 150 | + forward_prob[-1].sum() |
| 151 | + ) |
| 152 | + |
| 153 | + # calculate expectation of each feature_function given x |
| 154 | + cur_E_feature = 0. |
| 155 | + if funcs is self.used_feature_funcs: |
| 156 | + for i in range(1, self.sequence_length + 1): |
| 157 | + cur_E_feature += ( |
| 158 | + forward_prob[i] * backward_prob[i] * feature[func_i, x_i, i - 1] |
| 159 | + ).sum() |
| 160 | + elif funcs is self.used_trans_feature_funcs: |
| 161 | + for i in range(0, self.sequence_length): |
| 162 | + cur_E_feature += ( |
| 163 | + np.outer(forward_prob[i], backward_prob[i + 1]) * trans[i] * trans_feature[func_i, x_i, i] |
| 164 | + ).sum() |
| 165 | + else: |
| 166 | + raise Exception("Unknown function set!") |
| 167 | + cur_E_feature /= forward_prob[-1].sum() |
| 168 | + |
| 169 | + coef[max_feature[x_i]] += cur_p_x * cur_E_feature |
| 170 | + |
| 171 | + # update w |
| 172 | + dw_i = log(newton( |
| 173 | + lambda x: sum(c * x ** i for i, c in enumerate(coef)) - E_experience[func_i], |
| 174 | + lambda x: sum(i * c * x ** (i - 1) for i, c in enumerate(coef) if i > 0), |
| 175 | + 1 |
| 176 | + )) |
| 177 | + w[func_i] += dw_i |
| 178 | + loss += abs(E_experience[func_i] - coef.sum()) |
| 179 | + loss /= len(self.feature_funcs) + len(self.trans_feature_funcs) |
| 180 | + if self.verbose: |
| 181 | + print(f'Iteration {iteration} ends, Loss: {loss}') |
| 182 | + |
| 183 | + def predict(self, X): |
| 184 | + """ |
| 185 | + predict state sequence y using viterbi algorithm |
| 186 | + X is a group of sequence x in a two-dimensional array |
| 187 | + """ |
| 188 | + |
| 189 | + ans = np.zeros([len(X), self.sequence_length]) |
| 190 | + for x_i, x in enumerate(X): |
| 191 | + # pre-calculate all the possible values of feature functions |
| 192 | + feature = np.zeros([len(self.used_feature_funcs), self.sequence_length, self.n_y]) |
| 193 | + trans_feature = np.zeros([len(self.used_trans_feature_funcs), self.sequence_length, self.n_y, self.n_y]) |
| 194 | + for func_i, func in enumerate(self.used_trans_feature_funcs): |
| 195 | + for i in range(1, self.sequence_length): |
| 196 | + for y_i_1 in range(self.n_y): |
| 197 | + for y_i in range(self.n_y): |
| 198 | + trans_feature[func_i, i, y_i_1, y_i] = func(y_i_1, y_i, x, i) |
| 199 | + for func_i, func in enumerate(self.used_feature_funcs): |
| 200 | + for i in range(self.sequence_length): |
| 201 | + for y_i in range(self.n_y): |
| 202 | + feature[func_i, i, y_i] = func(y_i, x, i) |
| 203 | + feature = (self.w_feature_funcs[:, None, None] * feature).sum(axis=0) |
| 204 | + trans_feature = (self.w_trans_feature_funcs[:, None, None, None] * trans_feature).sum(axis=0) |
| 205 | + |
| 206 | + # viterbi |
| 207 | + pre_state = np.zeros([self.sequence_length, self.n_y], dtype=int) - 1 |
| 208 | + prob = np.zeros([self.sequence_length, self.n_y]) |
| 209 | + cur_prob = np.ones(self.n_y) |
| 210 | + for i in range(self.sequence_length): |
| 211 | + trans_prob = cur_prob[:, None] + trans_feature[i] |
| 212 | + pre_state[i] = trans_prob.argmax(axis=0) |
| 213 | + cur_prob = trans_prob.max(axis=0) + feature[i] |
| 214 | + prob[i] = cur_prob |
| 215 | + |
| 216 | + # back track the trace |
| 217 | + cur_state = prob[-1].argmax() |
| 218 | + for i in range(self.sequence_length - 1, -1, -1): |
| 219 | + ans[x_i, i] = cur_state |
| 220 | + cur_state = pre_state[i, cur_state] |
| 221 | + return ans |
| 222 | + |
| 223 | + |
| 224 | +if __name__ == '__main__': |
| 225 | + def demonstrate(X, Y, testX, n_y, desc): |
| 226 | + console = Console(markup=False) |
| 227 | + |
| 228 | + vocab = set(X.flatten()) |
| 229 | + vocab_size = len(vocab) |
| 230 | + word2num = {word: num for num, word in enumerate(vocab)} |
| 231 | + |
| 232 | + f_word2num = np.vectorize(lambda word: word2num[word]) |
| 233 | + |
| 234 | + numX, num_testX = map(f_word2num, (X, testX)) |
| 235 | + |
| 236 | + sequence_length = numX.shape[-1] |
| 237 | + |
| 238 | + class FeatureFunc: |
| 239 | + def __init__(self, x_i, y_i): |
| 240 | + self.x_i = x_i |
| 241 | + self.y_i = y_i |
| 242 | + |
| 243 | + def __call__(self, y_i, x, i): |
| 244 | + return int(y_i == self.y_i and x[i] == self.x_i) |
| 245 | + |
| 246 | + class TransFeatureFunc: |
| 247 | + def __init__(self, y_i_1, y_i): |
| 248 | + self.y_i = y_i |
| 249 | + self.y_i_1 = y_i_1 |
| 250 | + |
| 251 | + def __call__(self, y_i_1, y_i, x, i): |
| 252 | + return int(y_i_1 == self.y_i_1 and y_i == self.y_i) |
| 253 | + |
| 254 | + feature_funcs = [FeatureFunc(x_i, y_i) |
| 255 | + for x_i in range(vocab_size) |
| 256 | + for y_i in range(n_y)] |
| 257 | + trans_feature_funcs = [TransFeatureFunc(y_i_1, y_i) |
| 258 | + for y_i_1 in range(n_y) |
| 259 | + for y_i in range(n_y)] |
| 260 | + |
| 261 | + linear_chain_conditional_random_field = LinearChainConditionalRandomField( |
| 262 | + feature_funcs, |
| 263 | + trans_feature_funcs, |
| 264 | + sequence_length, |
| 265 | + vocab_size, |
| 266 | + n_y, |
| 267 | + verbose=True |
| 268 | + ) |
| 269 | + linear_chain_conditional_random_field.fit(numX, Y) |
| 270 | + pred = linear_chain_conditional_random_field.predict(num_testX) |
| 271 | + |
| 272 | + # show in table |
| 273 | + print(desc) |
| 274 | + table = Table() |
| 275 | + for x, p in zip(testX, pred): |
| 276 | + table.add_row(*map(str, x)) |
| 277 | + table.add_row(*map(str, p)) |
| 278 | + console.print(table) |
| 279 | + |
| 280 | + |
| 281 | + # ---------------------- Example 1 -------------------------------------------- |
| 282 | + X = np.array([s.split() for s in |
| 283 | + ['i am good .', |
| 284 | + 'i am bad .', |
| 285 | + 'you are good .', |
| 286 | + 'you are bad .', |
| 287 | + 'it is good .', |
| 288 | + 'it is bad .', |
| 289 | + ] |
| 290 | + ]) |
| 291 | + Y = np.array([ |
| 292 | + [0, 1, 2, 3], |
| 293 | + [0, 1, 2, 3], |
| 294 | + [0, 1, 2, 3], |
| 295 | + [0, 1, 2, 3], |
| 296 | + [0, 1, 2, 3], |
| 297 | + ]) |
| 298 | + testX = np.array([s.split() for s in |
| 299 | + ['you is good .', |
| 300 | + 'i are bad .', |
| 301 | + 'it are good .'] |
| 302 | + ]) |
| 303 | + testX = np.concatenate([X, testX]) |
| 304 | + demonstrate(X, Y, testX, 4, "Example 1") |
| 305 | + |
| 306 | + # ---------------------- Example 1 -------------------------------------------- |
| 307 | + X = np.array([s.split() for s in |
| 308 | + ['i be good .', |
| 309 | + 'you be good .', |
| 310 | + 'be good . .', |
| 311 | + 'i love you .', |
| 312 | + 'he be . .', |
| 313 | + ] |
| 314 | + ]) |
| 315 | + # pronoun: 0, verb: 1, adjective: 2, ".": 3 |
| 316 | + Y = np.array([ |
| 317 | + [0, 1, 2, 3], |
| 318 | + [0, 1, 2, 3], |
| 319 | + [1, 2, 3, 3], |
| 320 | + [0, 1, 0, 3], |
| 321 | + [0, 1, 3, 3], |
| 322 | + ]) |
| 323 | + testX = np.array([s.split() for s in |
| 324 | + ['you be good .', |
| 325 | + 'he love you .', |
| 326 | + 'i love good .', |
| 327 | + '. be love .', |
| 328 | + '. love be .', |
| 329 | + '. . be good'] |
| 330 | + ]) |
| 331 | + testX = np.concatenate([X, testX]) |
| 332 | + demonstrate(X, Y, testX, 4, "Example 2") |
0 commit comments