-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
304 lines (247 loc) · 11.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import scipy.sparse as sp
import torch
import numpy as np
import pickle as pkl
import sys
import networkx as nx
from dataset import CustomDataset
import argparse
import random
from os import path as path
"""
READ ARGUMENTS
"""
def parse_boolean(value):
"""Parse boolean values passed as argument"""
value = value.lower()
if value in ["true", "yes", "y", "1", "t"]:
return True
elif value in ["false", "no", "n", "0", "f"]:
return False
return False
def parse_args():
""" Parse arguments """
parse = argparse.ArgumentParser()
## Run details
parse.add_argument("--model", help="model to train and test", type=str, default="GATH")
parse.add_argument("-d", "--dataset", help="dataset", type=str, default="cornell")
parse.add_argument('--model_name', type=str, help='Name of model used', default="Empty")
parse.add_argument('--verbose', type=parse_boolean, default=False, help='Whether to display training losses')
parse.add_argument('--hom_syn', type=str, default="h0.00-r1", help='Homophily level for synthetic dataset')
parse.add_argument('--use_seed', type=parse_boolean, default=True, help='Whether to use seed')
parse.add_argument('--seed', type=int, default=112, help='Seed')
parse.add_argument('--splits', type=int, default=0, help='Dataset split') ## Fix this later
parse.add_argument('--aggfunc', type=str, default="sum", help='Neighbor aggregation function: one of sum, mean or maxpool')
## Hyperparameters
parse.add_argument('--epochs', type=int, default=100, help='Number of epochs')
parse.add_argument('--patience', type=int, default=1000, help='Patience')
parse.add_argument('--batch_size', type=int, default=100000, help='Batch size')
parse.add_argument('--nhid', type=int, default=16, help='Hidden size')
parse.add_argument('--dropout', type=float, default=0.0, help='Dropout rate')
parse.add_argument('--nlayers', type=int, default=1, help='Number of layers')
parse.add_argument('--lr', type=float, default=5e-3, help='Learning rate')
parse.add_argument('--weight_decay', type=float, default=5e-3, help='Weight decay')
args = parse.parse_args()
return args
"""
GET INFORMATION FOR SELECTED MODEL
"""
def get_nodes_classes(dataset):
"""Get number of nodes and number of classes for the current graph"""
nodes = {"cornell": 183, "texas":183, "wisconsin":251, "film":7600,
"chameleon":2277, "squirrel":5201, "cora":2708, "citeseer":3327}
classes = {"cornell": 5, "texas":5, "wisconsin":5, "film":5,
"chameleon":5, "squirrel":5, "cora":7, "citeseer":6}
if dataset not in nodes:
print("Dataset is not present!")
return None, None
return nodes[dataset], classes[dataset]
def accuracy(output, labels):
"""Compute accuracy of predictions"""
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def normalize(adj, is_sparse=False):
"""Symmetrically normalize adjacency matrix."""
if is_sparse:
adj = adj.coalesce()
indices = adj.indices()
values = adj.values()
adj = sp.coo_matrix((values, (indices[0],indices[1])), shape=adj.shape)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
mx = sparse_mx_to_torch_sparse_tensor(adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo())
assert (mx.coalesce().indices() == indices).all()
return mx
else:
d = adj.sum(dim=1) + 1e-6
adj = adj / d.view([len(d),1])
return adj
"""
LOAD GRAPHS FROM FILES
"""
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def load_idx(split, dataset, labeled):
"""Return fixed splits, doesn't work for syn"""
idx = np.load("./data/{}/splits/{}_split_0.6_0.2_{}.npz".format(dataset, dataset, split))
if labeled is None:
idx_train = np.where(idx['train_mask'] == 1)[0]
idx_test = np.where(idx['test_mask'] == 1)[0]
idx_val = np.where(idx['val_mask'] == 1)[0]
else:
idx_train = np.where(idx['train_mask'][labeled] == 1)[0]
idx_test = np.where(idx['test_mask'][labeled] == 1)[0]
idx_val = np.where(idx['val_mask'][labeled] == 1)[0]
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
return idx_train, idx_val, idx_test
def load_syn_cora(name):
"""Load the dataset in file `syn-cora/<name>.npz`
`seed` controls the generation of training, validation and test splits"""
dataset = CustomDataset(root="syn-cora", name=name, setting="gcn", seed=15)
adj = dataset.adj # Access adjacency matrix
features = dataset.features # Access node features
labels = dataset.labels
idx = np.arange(features.shape[0])
random.seed(155)
random.shuffle(idx)
idx_train = idx[:int(0.5*len(idx))]
idx_val = idx[int(0.5*len(idx)):int(0.7*len(idx))]
idx_test = idx[int(0.7*len(idx)):]
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
labels = torch.LongTensor(labels)
features = sp.csr_matrix(features, dtype=np.float32)
features = torch.FloatTensor(np.array(features.todense()))
adj = torch.FloatTensor(np.array(adj.todense()))
return features, labels, adj, idx_train, idx_val, idx_test
def load_data(dataset, split_name=0):
"""Load features, labels and splits for the specified dataset"""
feature_list = []
label_list = []
f = open('./data/{}/out1_node_feature_label.txt'.format(dataset), 'r')
for line in f.readlines():
ele = line.strip().split('\t')
if ele[0] == 'node_id':
continue
feature = ele[1]
label = int(ele[2])
if dataset == 'film':
feature_array = np.zeros([931])
for f in feature.strip().split(','):
feature_array[int(f)-1] = 1
feature_list.append(feature_array)
else:
feature = feature.strip().split(',')
feature_list.append(feature)
label_list.append(label)
feature = np.array(feature_list, dtype=float)
idx = np.load("./data/{}/splits/{}_split_0.6_0.2_{}.npz".format(dataset, dataset, split_name))
idx_train = np.where(idx['train_mask'] == 1)[0]
idx_test = np.where(idx['test_mask'] == 1)[0]
idx_val = np.where(idx['val_mask'] == 1)[0]
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
labels = torch.LongTensor(label_list)
features = sp.csr_matrix(feature, dtype=np.float32)
features = torch.FloatTensor(np.array(features.todense()))
return features, labels, idx_train, idx_val, idx_test
def load_graph(dataset, n_nodes, features=None, undirected=False):
"""Load adjacency matrix for the specified dataset"""
print('Loading {} dataset...'.format(dataset))
struct_edges = np.genfromtxt("./data/" + dataset + "/out1_graph_edges.txt", dtype=np.int32)
sedges = np.array(list(struct_edges), dtype=np.int32).reshape(struct_edges.shape)
sadj = sp.coo_matrix((np.ones(sedges.shape[0]), (sedges[:, 0], sedges[:, 1])), shape=(n_nodes, n_nodes),
dtype=np.float32)
if undirected:
sadj = sadj + sadj.T.multiply(sadj.T > sadj) - sadj.multiply(sadj.T > sadj)
nsadj = torch.FloatTensor(np.array(sadj.todense()))
return nsadj
def load_data_cit(dataset_str, split_name=0, undirected=False):
"""
Load citation graphs Cora, Citeseer and Pubmed
Loads input data from gcn/data directory
ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances
(a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object;
ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object;
ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object;
ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict
object;
ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object.
All objects above must be saved using python pickle module.
:param dataset_str: Dataset name
:return: All data input files loaded (as well the training/test data).
"""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/{}/ind.{}.{}".format(dataset_str, dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/{}/ind.{}.test.index".format(dataset_str, dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
if undirected:
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = torch.FloatTensor(np.array(adj.todense()))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
lab = torch.zeros([adj.shape[0], ], dtype=torch.long)
labeled = []
for i in range(adj.shape[0]):
if len(np.where(labels[i,:] == 1)[0]) != 0:
lab[i] = int(np.where(labels[i,:] == 1)[0])
labeled.append(i)
adj = torch.reshape(adj[labeled, :][:,labeled], [len(labeled), len(labeled)])
features = features[labeled, :]
lab = lab[labeled]
idx = np.load("./data/{}/splits/{}_split_0.6_0.2_{}.npz".format(dataset_str, dataset_str, split_name))
idx_train = np.where(idx['train_mask'][labeled] == 1)[0]
idx_test = np.where(idx['test_mask'][labeled] == 1)[0]
idx_val = np.where(idx['val_mask'][labeled] == 1)[0]
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
labels = torch.LongTensor(labels)
features = sp.csr_matrix(features, dtype=np.float32)
features = torch.FloatTensor(np.array(features.todense()))
if dataset_str != "citeseer":
labeled = None
return adj, features, lab, idx_train, idx_val, idx_test, labeled