-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
109 lines (73 loc) · 4.34 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os, glob,shutil
#os.chdir("/home/datascience/cnn_wheel_ruts")
from keras_segmentation.predict import predict_multiple #importing predict function from keras
from osgeo import gdal, ogr, osr
from pathlib import Path
import geopandas as gpd
import matplotlib.pyplot as plt
import rasterio as rio
import numpy as np
import cv2
# load my functions
#os.chdir("/home/datascience/utils")
from scripts.tools import tile_ortho, predict_wheelRuts, mosaic_predictions_raster_semantic_seg, file_mode, directory_mode
import argparse
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # repo root directory
def parse_opt(known=False):
parser = argparse.ArgumentParser()
# Select model for inference
parser.add_argument('--model_name', type=str, default=ROOT / 'model/singleTrack_allData_49epochs.pt', help='model weights')
# parameters for tiling orthomosaic
parser.add_argument('--tile_size_m', type=int, default=20, help='tile size (meters) for splitting orthomosaic')
parser.add_argument('--buffer_size_m', type=int, default=2, help='buffer size (meters) for tile overlap')
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
if __name__ == '__main__':
"""Choose one of the following or modify as needed.
Directory mode will find all .tif files within a directory and sub directories
File mode will allow you to select multiple .tif files within a directory.
Alternatively, you can just list the orthomosaic file paths.
"""
opt = parse_opt()
# ortho_to_process = directory_mode()
# ortho_to_process = ['full_path_to_your_point_cloud.las', 'full_path_to_your_second_point_cloud.las', etc.]
ortho_to_process = file_mode()
for ortho_path in ortho_to_process:
orig_dir= os.getcwd()
model_dir= os.getcwd()+"/model/"
# define some basic parameters
tile_size_m= opt.tile_size_m # length of the side of each tile in meters (should NOT change this as this is the size that has been used in the training)
buffer_size_m= opt.buffer_size_m # size of buffer around each tile
model_name=opt.model_name # select different models available in model folder
# 3 - Split large orthomosaic into small tiles (20 meters side)
print("Tiling orthomosaic..................................................................................................")
tile_ortho(ortho_path, tile_size_m, buffer_size_m, format_tiles="PNG")
# 4 - Inference on tiled pngs
print("Predicting wheel-ruts..............................................................................................")
os.chdir(os.path.dirname(os.path.realpath(__file__)))
tiles_dir=os.path.dirname(ortho_path)+"/tiles_png"
predict_wheelRuts(tiles_dir, model_dir, model_name)
# 5 - Mosaic results
print("Mosaicking results.................................................................................................")
## Get orthomosaic name and EPGS code
#tiles_dir=os.path.dirname(ortho_path)+"/tiles_dir"
### get name of the orthomosaic/drone project and the path where it's stored
ortho_name=Path(ortho_path).stem # ortho name
ortho_folder_path=os.path.dirname(ortho_path) # get path name for the folder where the orthomosaic is stored
### Get pixel resolution (in meters) and tile size in pixels
src_ds = gdal.Open(ortho_path) # get raster datasource
_, xres, _, _, _, yres = src_ds.GetGeoTransform() # get pixel size in meters
tile_size_px= round(tile_size_m/abs(xres)) # calculate the tile size in pixels
### Get EPSG code
proj = osr.SpatialReference(wkt=src_ds.GetProjection())
EPSG_code= proj.GetAttrValue('AUTHORITY',1)
## Define function parameters
predicted_dir=tiles_dir+'/predictions'
dir_orig_tiles=os.path.split(predicted_dir)[0]
dir_export=os.path.split(dir_orig_tiles)[0]
## run mosaicking function
root_dir= os.chdir(orig_dir)
print("original_directory:.......................... ",orig_dir)
mosaic_predictions_raster_semantic_seg(predicted_dir , dir_orig_tiles, dir_export, EPSG_code, ortho_name)
# END