-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_data.py
1817 lines (1657 loc) · 79.8 KB
/
aggregate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# imports
# data wrangling
import pandas as pd
# string manipulation (regex)
import re
# path information
import pathlib
# file information
import os
import datetime
# excel file creation
import openpyxl
# supressing runtime warning
# RuntimeWarning: Mean of empty slice warnings.warn("Mean of empty slice", RuntimeWarning)
import warnings
warnings.simplefilter("ignore", category=RuntimeWarning)
# determine runtime
import timeit
import time
def aggregate_data(FILE):
PATH = str(pathlib.Path().absolute()) + "\Data\\"
df = pd.read_csv(PATH+FILE)
df = df.reindex(columns=[
"BEACON",
"SECTOR NUMBER",
"TOTAL SHIPS DEFEATED",
"TOTAL SCRAP COLLECTED",
"TOTAL CREW HIRED",
"SCORE",
"STORE",
"SCRAP",
"HULL",
"FUEL",
"DRONE PARTS",
"MISSILES",
"CREW SIZE",
"WEAPON SLOT 1",
"WEAPON SLOT 2",
"WEAPON SLOT 3",
"WEAPON SLOT 4",
"DRONE SLOT 1",
"DRONE SLOT 2",
"DRONE SLOT 3",
"AUGMENTS",
"POWER CAPACITY",
"SHIELDS CAPACITY",
"ENGINES CAPACITY",
"OXYGEN SYSTEM CAPACITY",
"WEAPONS SYSTEM CAPACITY",
"DRONE CONTROL SYSTEM CAPACITY",
"MEDBAY SYSTEM CAPACITY",
"TELEPORTER SYSTEM CAPACITY",
"CLOAKING SYSTEM CAPACITY",
"ARTILLERY SYSTEM CAPACITY",
"CLONEBAY SYSTEM CAPACITY",
"MINDCONTROL SYSTEM CAPACITY",
"HACKING SYSTEM CAPACITY",
"PILOT SYTEM CAPACITY",
"SENSORS SYSTEM CAPACITY",
"DOORS SYSTEM CAPACITY",
"BATTERY SYSTEM CAPACITY",
"CARGO",
])
# data extraction 1
# ship used
ship = re.search(r'\((.*?)-', FILE).group(1)
ship = ship.strip()
# date time
date = os.path.getmtime(PATH+FILE)
date = datetime.datetime.fromtimestamp(date)
# result
if FILE.startswith("w"):
result = "victory"
else:
result = "loss"
# weapons
weapon1 = df["WEAPON SLOT 1"].iloc[-1]
weapon2 = df["WEAPON SLOT 2"].iloc[-1]
weapon3 = df["WEAPON SLOT 3"].iloc[-1]
weapon4 = df["WEAPON SLOT 4"].iloc[-1]
weapons = [weapon1, weapon2, weapon3, weapon4]
# augments
augments = df["AUGMENTS"].iloc[-1]
try:
augments = augments.split(",")
except:
augments = [augments]
## possible results
## no exception: list with 2 or 3 augments
## exception thrown: list with none or 1 augment
if str(augments) == "[nan]" or str(augments) == "nan" or not augments:
## list is empty
print("--> Ship had no augments installed when finishing the run.")
augment1 = ""
augment2 = ""
augment3 = ""
augment1_beacon = float("NaN")
augment2_beacon = float("NaN")
augment3_beacon = float("NaN")
else:
augments_beacon = []
augments_sorted = []
idx = 0
while idx < df["BEACON"].iloc[-1]-1:
val = df.loc[idx,"AUGMENTS"]
idx += 1
if str(val) == "nan":
break
#print("debug-message: current value is nan for augments, beacon {}".format(df.loc[idx,"BEACON"]))
## if val only contains one augment
elif val in augments:
augments.remove(val)
augments_beacon.append(idx)
augments_sorted.append(val)
idx=0
else:
## val has to be a list of 2-3 augments
val = val.split(",")
for v in val:
if v in augments:
augments.remove(v)
augments_beacon.append(idx)
augments_sorted.append(v)
idx=0
break
## end of loop
try:
augment1 = augments_sorted.pop(0)
augment1_beacon = augments_beacon.pop(0)
except:
augment1 = ""
augment1_beacon = float("NaN")
try:
augment2 = augments_sorted.pop(0)
augment2_beacon = augments_beacon.pop(0)
except:
augment2 = ""
augment2_beacon = float("NaN")
try:
augment3 = augments_sorted.pop(0)
augment3_beacon = augments_beacon.pop(0)
except:
augment3 = ""
augment3_beacon = float("NaN")
# drones
drone1 = df["DRONE SLOT 1"].iloc[-1]
drone2 = df["DRONE SLOT 2"].iloc[-1]
drone3 = df["DRONE SLOT 3"].iloc[-1]
drones= [drone1, drone2, drone3]
# data extraction 2
## helper function
def seperate(series, idx):
try:
return series.iloc[idx]
except: return float("NaN")
# Observation: total, med, mean, std, min, max, sector[1-8], med, mean, std, min, max
# score
score_total = df["SCORE"].max()
score_med = df["SCORE"].median()
score_mean = df["SCORE"].mean()
score_std = df["SCORE"].std()
score_min = df["SCORE"].min()
score_max = df["SCORE"].max()
score_per_sector = df["SCORE"].groupby(df["SECTOR NUMBER"]).max()
# correcting score per sector to show gain instead of total
temp = 0
for idx, val in score_per_sector.iteritems():
score_per_sector[idx] = val - temp
temp = val
score_s1 = seperate(score_per_sector, 0)
score_s2 = seperate(score_per_sector, 1)
score_s3 = seperate(score_per_sector, 2)
score_s4 = seperate(score_per_sector, 3)
score_s5 = seperate(score_per_sector, 4)
score_s6 = seperate(score_per_sector, 5)
score_s7 = seperate(score_per_sector, 6)
score_s8 = seperate(score_per_sector, 7)
score_s_med = score_per_sector.median()
score_s_mean = score_per_sector.mean()
score_s_std = score_per_sector.std()
score_s_min = score_per_sector.min()
score_s_max = score_per_sector.max()
# scrap earned
temp = 0
for idx, val in df["TOTAL SCRAP COLLECTED"].iteritems():
df.loc[idx,"SCRAP EARNED"] = val - temp
temp = df.loc[idx,"TOTAL SCRAP COLLECTED"]
scrap_earned_total = int(df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].sum())
scrap_earned_med = int(df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].median())
scrap_earned_mean = int(df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].mean())
scrap_earned_std = int(df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].std())
scrap_earned_min = int(df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].min())
scrap_earned_max = int(df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].max())
## scrap earned per sector
scrap_earned_per_sector = df.loc[df["SCRAP EARNED"] > 0, "SCRAP EARNED"].groupby(df["SECTOR NUMBER"]).sum()
scrap_earned_s1 = seperate(scrap_earned_per_sector, 0)
scrap_earned_s2 = seperate(scrap_earned_per_sector, 1)
scrap_earned_s3 = seperate(scrap_earned_per_sector, 2)
scrap_earned_s4 = seperate(scrap_earned_per_sector, 3)
scrap_earned_s5 = seperate(scrap_earned_per_sector, 4)
scrap_earned_s6 = seperate(scrap_earned_per_sector, 5)
scrap_earned_s7 = seperate(scrap_earned_per_sector, 6)
scrap_earned_s8 = seperate(scrap_earned_per_sector, 7)
scrap_earned_s_med = scrap_earned_per_sector.median()
scrap_earned_s_mean = scrap_earned_per_sector.mean()
scrap_earned_s_std = scrap_earned_per_sector.std()
scrap_earned_s_min = scrap_earned_per_sector.min()
scrap_earned_s_max = scrap_earned_per_sector.max()
# scrap held
scrap_held_total = df["SCRAP"].sum()
scrap_held_med = df["SCRAP"].median()
scrap_held_mean = df["SCRAP"].mean()
scrap_held_std = df["SCRAP"].std()
scrap_held_min = df["SCRAP"].min()
scrap_held_max = df["SCRAP"].max()
## ATTENTION: average held scrap is taken into account for sector aggregation
scrap_held_per_sector = df["SCRAP"].groupby(df["SECTOR NUMBER"]).mean()
scrap_held_s1 = seperate(scrap_held_per_sector, 0)
scrap_held_s2 = seperate(scrap_held_per_sector, 1)
scrap_held_s3 = seperate(scrap_held_per_sector, 2)
scrap_held_s4 = seperate(scrap_held_per_sector, 3)
scrap_held_s5 = seperate(scrap_held_per_sector, 4)
scrap_held_s6 = seperate(scrap_held_per_sector, 5)
scrap_held_s7 = seperate(scrap_held_per_sector, 6)
scrap_held_s8 = seperate(scrap_held_per_sector, 7)
scrap_held_s_med = scrap_held_per_sector.median()
scrap_held_s_mean = scrap_held_per_sector.mean()
scrap_held_s_std = scrap_held_per_sector.std()
scrap_held_s_min = scrap_held_per_sector.min()
scrap_held_s_max = scrap_held_per_sector.max()
# beacons
beacons_total = df["BEACON"].max()
beacons_med = float("NaN")
beacons_mean = float("NaN")
beacons_std = float("NaN")
beacons_min = float("NaN")
beacons_max = float("NaN")
sector_beacons = df["BEACON"].groupby(df["SECTOR NUMBER"]).max()
beacons_s1 = seperate(sector_beacons, 0)
beacons_s2 = seperate(sector_beacons, 1)
beacons_s3 = seperate(sector_beacons, 2)
beacons_s4 = seperate(sector_beacons, 3)
beacons_s5 = seperate(sector_beacons, 4)
beacons_s6 = seperate(sector_beacons, 5)
beacons_s7 = seperate(sector_beacons, 6)
beacons_s8 = seperate(sector_beacons, 7)
beacons_s_med = sector_beacons.median()
beacons_s_mean = sector_beacons.mean()
beacons_s_std = sector_beacons.std()
beacons_s_min = sector_beacons.min()
beacons_s_max = sector_beacons.max()
# ships defeated
ships_defeated_total = df["TOTAL SHIPS DEFEATED"].max()
ships_defeated_med = float("NaN")
ships_defeated_mean = float("NaN")
ships_defeated_std = float("NaN")
ships_defeated_min = float("NaN")
ships_defeated_max = float("NaN")
ships_defeated_per_sector = df["TOTAL SHIPS DEFEATED"].groupby(df["SECTOR NUMBER"]).max()
# correcting ships defeated per sector to show defeated ships instead of total
temp = 0
for idx, val in ships_defeated_per_sector.iteritems():
ships_defeated_per_sector[idx] = val - temp
temp = val
ships_defeated_s1 = seperate(ships_defeated_per_sector, 0)
ships_defeated_s2 = seperate(ships_defeated_per_sector, 1)
ships_defeated_s3 = seperate(ships_defeated_per_sector, 2)
ships_defeated_s4 = seperate(ships_defeated_per_sector, 3)
ships_defeated_s5 = seperate(ships_defeated_per_sector, 4)
ships_defeated_s6 = seperate(ships_defeated_per_sector, 5)
ships_defeated_s7 = seperate(ships_defeated_per_sector, 6)
ships_defeated_s8 = seperate(ships_defeated_per_sector, 7)
ships_defeated_s_med = ships_defeated_per_sector.median()
ships_defeated_s_mean = ships_defeated_per_sector.mean()
ships_defeated_s_std = ships_defeated_per_sector.std()
ships_defeated_s_min = ships_defeated_per_sector.min()
ships_defeated_s_max = ships_defeated_per_sector.max()
# hull
## hull_total is a bad descriptor but is a good indicator for a combination of
## 2 attributes that need to be maximized anyways --> beacons_total * hull
hull_total = df["HULL"].sum()
hull_med = df["HULL"].median()
hull_mean = df["HULL"].mean()
hull_std = df["HULL"].std()
hull_min = df["HULL"].min()
hull_max = df["HULL"].max()
## average hull is taken into account for sector aggregation
hull_per_sector = df["HULL"].groupby(df["SECTOR NUMBER"]).mean()
hull_s1 = seperate(hull_per_sector, 0)
hull_s2 = seperate(hull_per_sector, 1)
hull_s3 = seperate(hull_per_sector, 2)
hull_s4 = seperate(hull_per_sector, 3)
hull_s5 = seperate(hull_per_sector, 4)
hull_s6 = seperate(hull_per_sector, 5)
hull_s7 = seperate(hull_per_sector, 6)
hull_s8 = seperate(hull_per_sector, 7)
hull_s_med = hull_per_sector.median()
hull_s_mean = hull_per_sector.mean()
hull_s_std = hull_per_sector.std()
hull_s_min = hull_per_sector.min()
hull_s_max = hull_per_sector.max()
# hull damage
temp = 30
for idx, val in df["HULL"].iteritems():
if temp == df.loc[idx,"HULL"]:
df.loc[idx, "HULL DAMAGE"] = 0
else:
df.loc[idx, "HULL DAMAGE"] = temp - df.loc[idx,"HULL"]
temp = df.loc[idx,"HULL"]
hull_damage_total = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].sum()
hull_damage_med = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].median()
hull_damage_mean = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].mean()
hull_damage_std = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].std()
hull_damage_min = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].min()
hull_damage_max = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].max()
hull_damage_per_sector = df.loc[df["HULL DAMAGE"] > 0, "HULL DAMAGE"].groupby(df["SECTOR NUMBER"]).sum()
hull_damage_s1 = seperate(hull_damage_per_sector, 0)
hull_damage_s2 = seperate(hull_damage_per_sector, 1)
hull_damage_s3 = seperate(hull_damage_per_sector, 2)
hull_damage_s4 = seperate(hull_damage_per_sector, 3)
hull_damage_s5 = seperate(hull_damage_per_sector, 4)
hull_damage_s6 = seperate(hull_damage_per_sector, 5)
hull_damage_s7 = seperate(hull_damage_per_sector, 6)
hull_damage_s8 = seperate(hull_damage_per_sector, 7)
hull_damage_s_med = hull_damage_per_sector.median()
hull_damage_s_mean = hull_damage_per_sector.mean()
hull_damage_s_std = hull_damage_per_sector.std()
hull_damage_s_min = hull_damage_per_sector.min()
hull_damage_s_max = hull_damage_per_sector.max()
# cargo amount
for idx, val in df["CARGO"].iteritems():
val = str(val)
if val == "nan":
df.loc[idx,"CARGO AMOUNT"] = 0
elif val.count(",") == 1:
df.loc[idx,"CARGO AMOUNT"] = 2
elif val.count(",") == 2:
df.loc[idx,"CARGO AMOUNT"] = 3
elif val.count(",") == 3:
df.loc[idx,"CARGO AMOUNT"] = 4
else:
df.loc[idx,"CARGO AMOUNT"] = 1
cargo_total = float("NaN")
cargo_med = df["CARGO AMOUNT"].median()
cargo_mean = df["CARGO AMOUNT"].mean()
cargo_std = df["CARGO AMOUNT"].std()
cargo_min = df["CARGO AMOUNT"].min()
cargo_max = df["CARGO AMOUNT"].max()
## average cargo amount is taken into account for sector aggregation
cargo_per_sector = df["CARGO AMOUNT"].groupby(df["SECTOR NUMBER"]).mean()
cargo_s1 = seperate(cargo_per_sector, 0)
cargo_s2 = seperate(cargo_per_sector, 1)
cargo_s3 = seperate(cargo_per_sector, 2)
cargo_s4 = seperate(cargo_per_sector, 3)
cargo_s5 = seperate(cargo_per_sector, 4)
cargo_s6 = seperate(cargo_per_sector, 5)
cargo_s7 = seperate(cargo_per_sector, 6)
cargo_s8 = seperate(cargo_per_sector, 7)
cargo_s_med = cargo_per_sector.median()
cargo_s_mean = cargo_per_sector.mean()
cargo_s_std = cargo_per_sector.std()
cargo_s_min = cargo_per_sector.min()
cargo_s_max = cargo_per_sector.max()
# stores visited
for idx, val in df["STORE"].iteritems():
val = str(val)
if val != "nan":
df.loc[idx,"STORES VISITED"] = 1
else:
df.loc[idx,"STORES VISITED"] = float("NaN")
stores_visited_total = df["STORES VISITED"].sum()
stores_visited_med = float("NaN")
stores_visited_mean = float("NaN")
stores_visited_std = float("NaN")
stores_visited_min = float("NaN")
stores_visited_max = float("NaN")
stores_per_sector = df["STORES VISITED"].groupby(df["SECTOR NUMBER"]).sum()
stores_visited_s1 = seperate(stores_per_sector, 0)
stores_visited_s2 = seperate(stores_per_sector, 1)
stores_visited_s3 = seperate(stores_per_sector, 2)
stores_visited_s4 = seperate(stores_per_sector, 3)
stores_visited_s5 = seperate(stores_per_sector, 4)
stores_visited_s6 = seperate(stores_per_sector, 5)
stores_visited_s7 = seperate(stores_per_sector, 6)
stores_visited_s8 = seperate(stores_per_sector, 7)
stores_visited_s_med = stores_per_sector.median()
stores_visited_s_mean = stores_per_sector.mean()
stores_visited_s_std = stores_per_sector.std()
stores_visited_s_min = stores_per_sector.min()
stores_visited_s_max = stores_per_sector.max()
# fuel
temp = 0
for idx, val in df["FUEL"].iteritems():
df.loc[idx,"FUEL EARNED"] = val - temp
temp = df.loc[idx,"FUEL"]
fuel_total = int(df.loc[df["FUEL EARNED"] > 0, "FUEL EARNED"].sum())
fuel_med = df["FUEL"].median()
fuel_mean = df["FUEL"].mean()
fuel_std = df["FUEL"].std()
fuel_min = df["FUEL"].min()
fuel_max = df["FUEL"].max()
## average fuel amount is taken into account for sector aggregation
fuel_per_sector = df["FUEL"].groupby(df["SECTOR NUMBER"]).mean()
fuel_s1 = seperate(fuel_per_sector, 0)
fuel_s2 = seperate(fuel_per_sector, 1)
fuel_s3 = seperate(fuel_per_sector, 2)
fuel_s4 = seperate(fuel_per_sector, 3)
fuel_s5 = seperate(fuel_per_sector, 4)
fuel_s6 = seperate(fuel_per_sector, 5)
fuel_s7 = seperate(fuel_per_sector, 6)
fuel_s8 = seperate(fuel_per_sector, 7)
fuel_s_med = fuel_per_sector.median()
fuel_s_mean = fuel_per_sector.mean()
fuel_s_std = fuel_per_sector.std()
fuel_s_min = fuel_per_sector.min()
fuel_s_max = fuel_per_sector.max()
# missiles
temp = 0
for idx, val in df["MISSILES"].iteritems():
df.loc[idx,"MISSILES EARNED"] = val - temp
temp = df.loc[idx,"MISSILES"]
missiles_total = int(df.loc[df["MISSILES EARNED"] > 0, "MISSILES EARNED"].sum())
missiles_med = df["MISSILES"].median()
missiles_mean = df["MISSILES"].mean()
missiles_std = df["MISSILES"].std()
missiles_min = df["MISSILES"].min()
missiles_max = df["MISSILES"].max()
## average missile amount is taken into account for sector aggregation
missiles_per_sector = df["MISSILES"].groupby(df["SECTOR NUMBER"]).mean()
missiles_s1 = seperate(missiles_per_sector, 0)
missiles_s2 = seperate(missiles_per_sector, 1)
missiles_s3 = seperate(missiles_per_sector, 2)
missiles_s4 = seperate(missiles_per_sector, 3)
missiles_s5 = seperate(missiles_per_sector, 4)
missiles_s6 = seperate(missiles_per_sector, 5)
missiles_s7 = seperate(missiles_per_sector, 6)
missiles_s8 = seperate(missiles_per_sector, 7)
missiles_s_med = missiles_per_sector.median()
missiles_s_mean = missiles_per_sector.mean()
missiles_s_std = missiles_per_sector.std()
missiles_s_min = missiles_per_sector.min()
missiles_s_max = missiles_per_sector.max()
# drone parts
temp = 0
for idx, val in df["DRONE PARTS"].iteritems():
df.loc[idx,"DRONE PARTS EARNED"] = val - temp
temp = df.loc[idx,"DRONE PARTS"]
drone_parts_total = int(df.loc[df["DRONE PARTS EARNED"] > 0, "DRONE PARTS EARNED"].sum())
drone_parts_med = df["DRONE PARTS"].median()
drone_parts_mean = df["DRONE PARTS"].mean()
drone_parts_std = df["DRONE PARTS"].std()
drone_parts_min = df["DRONE PARTS"].min()
drone_parts_max = df["DRONE PARTS"].max()
## average drone part amount is taken into account for sector aggregation
drone_parts_per_sector = df["DRONE PARTS"].groupby(df["SECTOR NUMBER"]).mean()
drone_parts_s1 = seperate(drone_parts_per_sector, 0)
drone_parts_s2 = seperate(drone_parts_per_sector, 1)
drone_parts_s3 = seperate(drone_parts_per_sector, 2)
drone_parts_s4 = seperate(drone_parts_per_sector, 3)
drone_parts_s5 = seperate(drone_parts_per_sector, 4)
drone_parts_s6 = seperate(drone_parts_per_sector, 5)
drone_parts_s7 = seperate(drone_parts_per_sector, 6)
drone_parts_s8 = seperate(drone_parts_per_sector, 7)
drone_parts_s_med = drone_parts_per_sector.median()
drone_parts_s_mean = drone_parts_per_sector.mean()
drone_parts_s_std = drone_parts_per_sector.std()
drone_parts_s_min = drone_parts_per_sector.min()
drone_parts_s_max = drone_parts_per_sector.max()
# crew hired
crew_hired_total = df["TOTAL CREW HIRED"].max()
crew_hired_med = float("NaN")
crew_hired_mean = float("NaN")
crew_hired_std = float("NaN")
crew_hired_min = float("NaN")
crew_hired_max = float("NaN")
crew_hired_per_sector = df["TOTAL CREW HIRED"].groupby(df["SECTOR NUMBER"]).max()
crew_hired_s1 = seperate(crew_hired_per_sector, 0)
crew_hired_s2 = seperate(crew_hired_per_sector, 1)
crew_hired_s3 = seperate(crew_hired_per_sector, 2)
crew_hired_s4 = seperate(crew_hired_per_sector, 3)
crew_hired_s5 = seperate(crew_hired_per_sector, 4)
crew_hired_s6 = seperate(crew_hired_per_sector, 5)
crew_hired_s7 = seperate(crew_hired_per_sector, 6)
crew_hired_s8 = seperate(crew_hired_per_sector, 7)
crew_hired_s_med = crew_hired_per_sector.median()
crew_hired_s_mean = crew_hired_per_sector.mean()
crew_hired_s_std = crew_hired_per_sector.std()
crew_hired_s_min = crew_hired_per_sector.min()
crew_hired_s_max = crew_hired_per_sector.max()
#crew lost
for idx, val in df["CREW SIZE"].iteritems():
## fixing data collection bug
if val > 8:
df.loc[idx, "CREW SIZE"] = 8
crew_lost = 0
temp = df["CREW SIZE"].iloc[0]
for idx, val in df["CREW SIZE"].iteritems():
if val < temp:
crew_lost += val - temp
df.loc[idx,"CREW LOST"] = abs(crew_lost)
else:
df.loc[idx,"CREW LOST"] = 0
temp = val
crew_lost_total = df["CREW LOST"].sum()
crew_lost_med = df["CREW LOST"].median()
crew_lost_mean = df["CREW LOST"].mean()
crew_lost_std = df["CREW LOST"].std()
crew_lost_min = df["CREW LOST"].min()
crew_lost_max = df["CREW LOST"].max()
crew_lost_per_sector = df.loc[df["CREW LOST"] > 0, "CREW LOST"].groupby(df["SECTOR NUMBER"]).sum()
crew_lost_s1 = seperate(crew_lost_per_sector, 0)
crew_lost_s2 = seperate(crew_lost_per_sector, 1)
crew_lost_s3 = seperate(crew_lost_per_sector, 2)
crew_lost_s4 = seperate(crew_lost_per_sector, 3)
crew_lost_s5 = seperate(crew_lost_per_sector, 4)
crew_lost_s6 = seperate(crew_lost_per_sector, 5)
crew_lost_s7 = seperate(crew_lost_per_sector, 6)
crew_lost_s8 = seperate(crew_lost_per_sector, 7)
crew_lost_s_med = crew_lost_per_sector.median()
crew_lost_s_mean = crew_lost_per_sector.mean()
crew_lost_s_std = crew_lost_per_sector.std()
crew_lost_s_min = crew_lost_per_sector.min()
crew_lost_s_max = crew_lost_per_sector.max()
# crew size
crew_size_total = float("NaN")
crew_size_med = df["CREW SIZE"].median()
crew_size_mean = df["CREW SIZE"].mean()
crew_size_std = df["CREW SIZE"].std()
crew_size_min = df["CREW SIZE"].min()
crew_size_max = df["CREW SIZE"].max()
crew_size_per_sector = df["CREW SIZE"].groupby(df["SECTOR NUMBER"]).max()
crew_size_s1 = seperate(crew_size_per_sector, 0)
crew_size_s2 = seperate(crew_size_per_sector, 1)
crew_size_s3 = seperate(crew_size_per_sector, 2)
crew_size_s4 = seperate(crew_size_per_sector, 3)
crew_size_s5 = seperate(crew_size_per_sector, 4)
crew_size_s6 = seperate(crew_size_per_sector, 5)
crew_size_s7 = seperate(crew_size_per_sector, 6)
crew_size_s8 = seperate(crew_size_per_sector, 7)
crew_size_s_med = crew_size_per_sector.median()
crew_size_s_mean = crew_size_per_sector.mean()
crew_size_s_std = crew_size_per_sector.std()
crew_size_s_min = crew_size_per_sector.min()
crew_size_s_max = crew_size_per_sector.max()
# power capacity
power_capacity_total = float("NaN")
power_capacity_med = df["POWER CAPACITY"].median()
power_capacity_mean = df["POWER CAPACITY"].mean()
power_capacity_std = df["POWER CAPACITY"].std()
power_capacity_min = df["POWER CAPACITY"].min()
power_capacity_max = df["POWER CAPACITY"].max()
power_capacity_per_sector = df["POWER CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
power_capacity_s1 = seperate(power_capacity_per_sector, 0)
power_capacity_s2 = seperate(power_capacity_per_sector, 1)
power_capacity_s3 = seperate(power_capacity_per_sector, 2)
power_capacity_s4 = seperate(power_capacity_per_sector, 3)
power_capacity_s5 = seperate(power_capacity_per_sector, 4)
power_capacity_s6 = seperate(power_capacity_per_sector, 5)
power_capacity_s7 = seperate(power_capacity_per_sector, 6)
power_capacity_s8 = seperate(power_capacity_per_sector, 7)
power_capacity_s_med = power_capacity_per_sector.median()
power_capacity_s_mean = power_capacity_per_sector.mean()
power_capacity_s_std = power_capacity_per_sector.std()
power_capacity_s_min = power_capacity_per_sector.min()
power_capacity_s_max = power_capacity_per_sector.max()
# weapons system capacity
weapons_capacity_total = float("NaN")
weapons_capacity_med = df["WEAPONS SYSTEM CAPACITY"].median()
weapons_capacity_mean = df["WEAPONS SYSTEM CAPACITY"].mean()
weapons_capacity_std = df["WEAPONS SYSTEM CAPACITY"].std()
weapons_capacity_min = df["WEAPONS SYSTEM CAPACITY"].min()
weapons_capacity_max = df["WEAPONS SYSTEM CAPACITY"].max()
weapons_capacity_per_sector = df["WEAPONS SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
weapons_capacity_s1 = seperate(weapons_capacity_per_sector, 0)
weapons_capacity_s2 = seperate(weapons_capacity_per_sector, 1)
weapons_capacity_s3 = seperate(weapons_capacity_per_sector, 2)
weapons_capacity_s4 = seperate(weapons_capacity_per_sector, 3)
weapons_capacity_s5 = seperate(weapons_capacity_per_sector, 4)
weapons_capacity_s6 = seperate(weapons_capacity_per_sector, 5)
weapons_capacity_s7 = seperate(weapons_capacity_per_sector, 6)
weapons_capacity_s8 = seperate(weapons_capacity_per_sector, 7)
weapons_capacity_s_med = weapons_capacity_per_sector.median()
weapons_capacity_s_mean = weapons_capacity_per_sector.mean()
weapons_capacity_s_std = weapons_capacity_per_sector.std()
weapons_capacity_s_min = weapons_capacity_per_sector.min()
weapons_capacity_s_max = weapons_capacity_per_sector.max()
# engines capacity
engines_capacity_total = float("NaN")
engines_capacity_med = df["ENGINES CAPACITY"].median()
engines_capacity_mean = df["ENGINES CAPACITY"].mean()
engines_capacity_std = df["ENGINES CAPACITY"].std()
engines_capacity_min = df["ENGINES CAPACITY"].min()
engines_capacity_max = df["ENGINES CAPACITY"].max()
engines_capacity_per_sector = df["ENGINES CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
engines_capacity_s1 = seperate(engines_capacity_per_sector, 0)
engines_capacity_s2 = seperate(engines_capacity_per_sector, 1)
engines_capacity_s3 = seperate(engines_capacity_per_sector, 2)
engines_capacity_s4 = seperate(engines_capacity_per_sector, 3)
engines_capacity_s5 = seperate(engines_capacity_per_sector, 4)
engines_capacity_s6 = seperate(engines_capacity_per_sector, 5)
engines_capacity_s7 = seperate(engines_capacity_per_sector, 6)
engines_capacity_s8 = seperate(engines_capacity_per_sector, 7)
engines_capacity_s_med = engines_capacity_per_sector.median()
engines_capacity_s_mean = engines_capacity_per_sector.mean()
engines_capacity_s_std = engines_capacity_per_sector.std()
engines_capacity_s_min = engines_capacity_per_sector.min()
engines_capacity_s_max = engines_capacity_per_sector.max()
# shields capacity
shields_capacity_total = float("NaN")
shields_capacity_med = df["SHIELDS CAPACITY"].median()
shields_capacity_mean = df["SHIELDS CAPACITY"].mean()
shields_capacity_std = df["SHIELDS CAPACITY"].std()
shields_capacity_min = df["SHIELDS CAPACITY"].min()
shields_capacity_max = df["SHIELDS CAPACITY"].max()
shields_capacity_per_sector = df["SHIELDS CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
shields_capacity_s1 = seperate(shields_capacity_per_sector, 0)
shields_capacity_s2 = seperate(shields_capacity_per_sector, 1)
shields_capacity_s3 = seperate(shields_capacity_per_sector, 2)
shields_capacity_s4 = seperate(shields_capacity_per_sector, 3)
shields_capacity_s5 = seperate(shields_capacity_per_sector, 4)
shields_capacity_s6 = seperate(shields_capacity_per_sector, 5)
shields_capacity_s7 = seperate(shields_capacity_per_sector, 6)
shields_capacity_s8 = seperate(shields_capacity_per_sector, 7)
shields_capacity_s_med = shields_capacity_per_sector.median()
shields_capacity_s_mean = shields_capacity_per_sector.mean()
shields_capacity_s_std = shields_capacity_per_sector.std()
shields_capacity_s_min = shields_capacity_per_sector.min()
shields_capacity_s_max = shields_capacity_per_sector.max()
# oxygen system capacity
oxygen_capacity_total = float("NaN")
oxygen_capacity_med = df["OXYGEN SYSTEM CAPACITY"].median()
oxygen_capacity_mean = df["OXYGEN SYSTEM CAPACITY"].mean()
oxygen_capacity_std = df["OXYGEN SYSTEM CAPACITY"].std()
oxygen_capacity_min = df["OXYGEN SYSTEM CAPACITY"].min()
oxygen_capacity_max = df["OXYGEN SYSTEM CAPACITY"].max()
oxygen_capacity_per_sector = df["OXYGEN SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
oxygen_capacity_s1 = seperate(oxygen_capacity_per_sector, 0)
oxygen_capacity_s2 = seperate(oxygen_capacity_per_sector, 1)
oxygen_capacity_s3 = seperate(oxygen_capacity_per_sector, 2)
oxygen_capacity_s4 = seperate(oxygen_capacity_per_sector, 3)
oxygen_capacity_s5 = seperate(oxygen_capacity_per_sector, 4)
oxygen_capacity_s6 = seperate(oxygen_capacity_per_sector, 5)
oxygen_capacity_s7 = seperate(oxygen_capacity_per_sector, 6)
oxygen_capacity_s8 = seperate(oxygen_capacity_per_sector, 7)
oxygen_capacity_s_med = oxygen_capacity_per_sector.median()
oxygen_capacity_s_mean = oxygen_capacity_per_sector.mean()
oxygen_capacity_s_std = oxygen_capacity_per_sector.std()
oxygen_capacity_s_min = oxygen_capacity_per_sector.min()
oxygen_capacity_s_max = oxygen_capacity_per_sector.max()
# medbay system capacity
medbay_capacity_total = float("NaN")
medbay_capacity_med = df["MEDBAY SYSTEM CAPACITY"].median()
medbay_capacity_mean = df["MEDBAY SYSTEM CAPACITY"].mean()
medbay_capacity_std = df["MEDBAY SYSTEM CAPACITY"].std()
medbay_capacity_min = df["MEDBAY SYSTEM CAPACITY"].min()
medbay_capacity_max = df["MEDBAY SYSTEM CAPACITY"].max()
medbay_capacity_per_sector = df["MEDBAY SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
medbay_capacity_s1 = seperate(medbay_capacity_per_sector, 0)
medbay_capacity_s2 = seperate(medbay_capacity_per_sector, 1)
medbay_capacity_s3 = seperate(medbay_capacity_per_sector, 2)
medbay_capacity_s4 = seperate(medbay_capacity_per_sector, 3)
medbay_capacity_s5 = seperate(medbay_capacity_per_sector, 4)
medbay_capacity_s6 = seperate(medbay_capacity_per_sector, 5)
medbay_capacity_s7 = seperate(medbay_capacity_per_sector, 6)
medbay_capacity_s8 = seperate(medbay_capacity_per_sector, 7)
medbay_capacity_s_med = medbay_capacity_per_sector.median()
medbay_capacity_s_mean = medbay_capacity_per_sector.mean()
medbay_capacity_s_std = medbay_capacity_per_sector.std()
medbay_capacity_s_min = medbay_capacity_per_sector.min()
medbay_capacity_s_max = medbay_capacity_per_sector.max()
# clonebay system capacity
clonebay_capacity_total = float("NaN")
clonebay_capacity_med = df["CLONEBAY SYSTEM CAPACITY"].median()
clonebay_capacity_mean = df["CLONEBAY SYSTEM CAPACITY"].mean()
clonebay_capacity_std = df["CLONEBAY SYSTEM CAPACITY"].std()
clonebay_capacity_min = df["CLONEBAY SYSTEM CAPACITY"].min()
clonebay_capacity_max = df["CLONEBAY SYSTEM CAPACITY"].max()
clonebay_capacity_per_sector = df["CLONEBAY SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
clonebay_capacity_s1 = seperate(clonebay_capacity_per_sector, 0)
clonebay_capacity_s2 = seperate(clonebay_capacity_per_sector, 1)
clonebay_capacity_s3 = seperate(clonebay_capacity_per_sector, 2)
clonebay_capacity_s4 = seperate(clonebay_capacity_per_sector, 3)
clonebay_capacity_s5 = seperate(clonebay_capacity_per_sector, 4)
clonebay_capacity_s6 = seperate(clonebay_capacity_per_sector, 5)
clonebay_capacity_s7 = seperate(clonebay_capacity_per_sector, 6)
clonebay_capacity_s8 = seperate(clonebay_capacity_per_sector, 7)
clonebay_capacity_s_med = clonebay_capacity_per_sector.median()
clonebay_capacity_s_mean = clonebay_capacity_per_sector.mean()
clonebay_capacity_s_std = clonebay_capacity_per_sector.std()
clonebay_capacity_s_min = clonebay_capacity_per_sector.min()
clonebay_capacity_s_max = clonebay_capacity_per_sector.max()
# pilot system capacity
pilot_capacity_total = float("NaN")
pilot_capacity_med = df["PILOT SYTEM CAPACITY"].median()
pilot_capacity_mean = df["PILOT SYTEM CAPACITY"].mean()
pilot_capacity_std = df["PILOT SYTEM CAPACITY"].std()
pilot_capacity_min = df["PILOT SYTEM CAPACITY"].min()
pilot_capacity_max = df["PILOT SYTEM CAPACITY"].max()
pilot_capacity_per_sector = df["PILOT SYTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
pilot_capacity_s1 = seperate(pilot_capacity_per_sector, 0)
pilot_capacity_s2 = seperate(pilot_capacity_per_sector, 1)
pilot_capacity_s3 = seperate(pilot_capacity_per_sector, 2)
pilot_capacity_s4 = seperate(pilot_capacity_per_sector, 3)
pilot_capacity_s5 = seperate(pilot_capacity_per_sector, 4)
pilot_capacity_s6 = seperate(pilot_capacity_per_sector, 5)
pilot_capacity_s7 = seperate(pilot_capacity_per_sector, 6)
pilot_capacity_s8 = seperate(pilot_capacity_per_sector, 7)
pilot_capacity_s_med = pilot_capacity_per_sector.median()
pilot_capacity_s_mean = pilot_capacity_per_sector.mean()
pilot_capacity_s_std = pilot_capacity_per_sector.std()
pilot_capacity_s_min = pilot_capacity_per_sector.min()
pilot_capacity_s_max = pilot_capacity_per_sector.max()
# sensors system capacity
sensors_capacity_total = float("NaN")
sensors_capacity_med = df["SENSORS SYSTEM CAPACITY"].median()
sensors_capacity_mean = df["SENSORS SYSTEM CAPACITY"].mean()
sensors_capacity_std = df["SENSORS SYSTEM CAPACITY"].std()
sensors_capacity_min = df["SENSORS SYSTEM CAPACITY"].min()
sensors_capacity_max = df["SENSORS SYSTEM CAPACITY"].max()
sensors_capacity_per_sector = df["SENSORS SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
sensors_capacity_s1 = seperate(sensors_capacity_per_sector, 0)
sensors_capacity_s2 = seperate(sensors_capacity_per_sector, 1)
sensors_capacity_s3 = seperate(sensors_capacity_per_sector, 2)
sensors_capacity_s4 = seperate(sensors_capacity_per_sector, 3)
sensors_capacity_s5 = seperate(sensors_capacity_per_sector, 4)
sensors_capacity_s6 = seperate(sensors_capacity_per_sector, 5)
sensors_capacity_s7 = seperate(sensors_capacity_per_sector, 6)
sensors_capacity_s8 = seperate(sensors_capacity_per_sector, 7)
sensors_capacity_s_med = sensors_capacity_per_sector.median()
sensors_capacity_s_mean = sensors_capacity_per_sector.mean()
sensors_capacity_s_std = sensors_capacity_per_sector.std()
sensors_capacity_s_min = sensors_capacity_per_sector.min()
sensors_capacity_s_max = sensors_capacity_per_sector.max()
# doors system capacity
doors_capacity_total = float("NaN")
doors_capacity_med = df["DOORS SYSTEM CAPACITY"].median()
doors_capacity_mean = df["DOORS SYSTEM CAPACITY"].mean()
doors_capacity_std = df["DOORS SYSTEM CAPACITY"].std()
doors_capacity_min = df["DOORS SYSTEM CAPACITY"].min()
doors_capacity_max = df["DOORS SYSTEM CAPACITY"].max()
doors_capacity_per_sector = df["DOORS SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
doors_capacity_s1 = seperate(doors_capacity_per_sector, 0)
doors_capacity_s2 = seperate(doors_capacity_per_sector, 1)
doors_capacity_s3 = seperate(doors_capacity_per_sector, 2)
doors_capacity_s4 = seperate(doors_capacity_per_sector, 3)
doors_capacity_s5 = seperate(doors_capacity_per_sector, 4)
doors_capacity_s6 = seperate(doors_capacity_per_sector, 5)
doors_capacity_s7 = seperate(doors_capacity_per_sector, 6)
doors_capacity_s8 = seperate(doors_capacity_per_sector, 7)
doors_capacity_s_med = doors_capacity_per_sector.median()
doors_capacity_s_mean = doors_capacity_per_sector.mean()
doors_capacity_s_std = doors_capacity_per_sector.std()
doors_capacity_s_min = doors_capacity_per_sector.min()
doors_capacity_s_max = doors_capacity_per_sector.max()
# drone system capacity
drone_capacity_total = float("NaN")
drone_capacity_med = df["DRONE CONTROL SYSTEM CAPACITY"].median()
drone_capacity_mean = df["DRONE CONTROL SYSTEM CAPACITY"].mean()
drone_capacity_std = df["DRONE CONTROL SYSTEM CAPACITY"].std()
drone_capacity_min = df["DRONE CONTROL SYSTEM CAPACITY"].min()
drone_capacity_max = df["DRONE CONTROL SYSTEM CAPACITY"].max()
drone_capacity_per_sector = df["DRONE CONTROL SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
drone_capacity_s1 = seperate(drone_capacity_per_sector, 0)
drone_capacity_s2 = seperate(drone_capacity_per_sector, 1)
drone_capacity_s3 = seperate(drone_capacity_per_sector, 2)
drone_capacity_s4 = seperate(drone_capacity_per_sector, 3)
drone_capacity_s5 = seperate(drone_capacity_per_sector, 4)
drone_capacity_s6 = seperate(drone_capacity_per_sector, 5)
drone_capacity_s7 = seperate(drone_capacity_per_sector, 6)
drone_capacity_s8 = seperate(drone_capacity_per_sector, 7)
drone_capacity_s_med = drone_capacity_per_sector.median()
drone_capacity_s_mean = drone_capacity_per_sector.mean()
drone_capacity_s_std = drone_capacity_per_sector.std()
drone_capacity_s_min = drone_capacity_per_sector.min()
drone_capacity_s_max = drone_capacity_per_sector.max()
# teleporter system capacity
teleporter_capacity_total = float("NaN")
teleporter_capacity_med = df["TELEPORTER SYSTEM CAPACITY"].median()
teleporter_capacity_mean = df["TELEPORTER SYSTEM CAPACITY"].mean()
teleporter_capacity_std = df["TELEPORTER SYSTEM CAPACITY"].std()
teleporter_capacity_min = df["TELEPORTER SYSTEM CAPACITY"].min()
teleporter_capacity_max = df["TELEPORTER SYSTEM CAPACITY"].max()
teleporter_capacity_per_sector = df["TELEPORTER SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
teleporter_capacity_s1 = seperate(teleporter_capacity_per_sector, 0)
teleporter_capacity_s2 = seperate(teleporter_capacity_per_sector, 1)
teleporter_capacity_s3 = seperate(teleporter_capacity_per_sector, 2)
teleporter_capacity_s4 = seperate(teleporter_capacity_per_sector, 3)
teleporter_capacity_s5 = seperate(teleporter_capacity_per_sector, 4)
teleporter_capacity_s6 = seperate(teleporter_capacity_per_sector, 5)
teleporter_capacity_s7 = seperate(teleporter_capacity_per_sector, 6)
teleporter_capacity_s8 = seperate(teleporter_capacity_per_sector, 7)
teleporter_capacity_s_med = teleporter_capacity_per_sector.median()
teleporter_capacity_s_mean = teleporter_capacity_per_sector.mean()
teleporter_capacity_s_std = teleporter_capacity_per_sector.std()
teleporter_capacity_s_min = teleporter_capacity_per_sector.min()
teleporter_capacity_s_max = teleporter_capacity_per_sector.max()
# cloaking system capacity
cloaking_capacity_total = float("NaN")
cloaking_capacity_med = df["CLOAKING SYSTEM CAPACITY"].median()
cloaking_capacity_mean = df["CLOAKING SYSTEM CAPACITY"].mean()
cloaking_capacity_std = df["CLOAKING SYSTEM CAPACITY"].std()
cloaking_capacity_min = df["CLOAKING SYSTEM CAPACITY"].min()
cloaking_capacity_max = df["CLOAKING SYSTEM CAPACITY"].max()
cloaking_capacity_per_sector = df["CLOAKING SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
cloaking_capacity_s1 = seperate(cloaking_capacity_per_sector, 0)
cloaking_capacity_s2 = seperate(cloaking_capacity_per_sector, 1)
cloaking_capacity_s3 = seperate(cloaking_capacity_per_sector, 2)
cloaking_capacity_s4 = seperate(cloaking_capacity_per_sector, 3)
cloaking_capacity_s5 = seperate(cloaking_capacity_per_sector, 4)
cloaking_capacity_s6 = seperate(cloaking_capacity_per_sector, 5)
cloaking_capacity_s7 = seperate(cloaking_capacity_per_sector, 6)
cloaking_capacity_s8 = seperate(cloaking_capacity_per_sector, 7)
cloaking_capacity_s_med = cloaking_capacity_per_sector.median()
cloaking_capacity_s_mean = cloaking_capacity_per_sector.mean()
cloaking_capacity_s_std = cloaking_capacity_per_sector.std()
cloaking_capacity_s_min = cloaking_capacity_per_sector.min()
cloaking_capacity_s_max = cloaking_capacity_per_sector.max()
# mindcontrol system capacity
mindcontrol_capacity_total = float("NaN")
mindcontrol_capacity_med = df["MINDCONTROL SYSTEM CAPACITY"].median()
mindcontrol_capacity_mean = df["MINDCONTROL SYSTEM CAPACITY"].mean()
mindcontrol_capacity_std = df["MINDCONTROL SYSTEM CAPACITY"].std()
mindcontrol_capacity_min = df["MINDCONTROL SYSTEM CAPACITY"].min()
mindcontrol_capacity_max = df["MINDCONTROL SYSTEM CAPACITY"].max()
mindcontrol_capacity_per_sector = df["MINDCONTROL SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
mindcontrol_capacity_s1 = seperate(mindcontrol_capacity_per_sector, 0)
mindcontrol_capacity_s2 = seperate(mindcontrol_capacity_per_sector, 1)
mindcontrol_capacity_s3 = seperate(mindcontrol_capacity_per_sector, 2)
mindcontrol_capacity_s4 = seperate(mindcontrol_capacity_per_sector, 3)
mindcontrol_capacity_s5 = seperate(mindcontrol_capacity_per_sector, 4)
mindcontrol_capacity_s6 = seperate(mindcontrol_capacity_per_sector, 5)
mindcontrol_capacity_s7 = seperate(mindcontrol_capacity_per_sector, 6)
mindcontrol_capacity_s8 = seperate(mindcontrol_capacity_per_sector, 7)
mindcontrol_capacity_s_med = mindcontrol_capacity_per_sector.median()
mindcontrol_capacity_s_mean = mindcontrol_capacity_per_sector.mean()
mindcontrol_capacity_s_std = mindcontrol_capacity_per_sector.std()
mindcontrol_capacity_s_min = mindcontrol_capacity_per_sector.min()
mindcontrol_capacity_s_max = mindcontrol_capacity_per_sector.max()
# hacking system capacity
hacking_capacity_total = float("NaN")
hacking_capacity_med = df["HACKING SYSTEM CAPACITY"].median()
hacking_capacity_mean = df["HACKING SYSTEM CAPACITY"].mean()
hacking_capacity_std = df["HACKING SYSTEM CAPACITY"].std()
hacking_capacity_min = df["HACKING SYSTEM CAPACITY"].min()
hacking_capacity_max = df["HACKING SYSTEM CAPACITY"].max()
hacking_capacity_per_sector = df["HACKING SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
hacking_capacity_s1 = seperate(hacking_capacity_per_sector, 0)
hacking_capacity_s2 = seperate(hacking_capacity_per_sector, 1)
hacking_capacity_s3 = seperate(hacking_capacity_per_sector, 2)
hacking_capacity_s4 = seperate(hacking_capacity_per_sector, 3)
hacking_capacity_s5 = seperate(hacking_capacity_per_sector, 4)
hacking_capacity_s6 = seperate(hacking_capacity_per_sector, 5)
hacking_capacity_s7 = seperate(hacking_capacity_per_sector, 6)
hacking_capacity_s8 = seperate(hacking_capacity_per_sector, 7)
hacking_capacity_s_med = hacking_capacity_per_sector.median()
hacking_capacity_s_mean = hacking_capacity_per_sector.mean()
hacking_capacity_s_std = hacking_capacity_per_sector.std()
hacking_capacity_s_min = hacking_capacity_per_sector.min()
hacking_capacity_s_max = hacking_capacity_per_sector.max()
# battery system capacity
battery_capacity_total = float("NaN")
battery_capacity_med = df["BATTERY SYSTEM CAPACITY"].median()
battery_capacity_mean = df["BATTERY SYSTEM CAPACITY"].mean()
battery_capacity_std = df["BATTERY SYSTEM CAPACITY"].std()
battery_capacity_min = df["BATTERY SYSTEM CAPACITY"].min()
battery_capacity_max = df["BATTERY SYSTEM CAPACITY"].max()
battery_capacity_per_sector = df["BATTERY SYSTEM CAPACITY"].groupby(df["SECTOR NUMBER"]).max()
battery_capacity_s1 = seperate(battery_capacity_per_sector, 0)
battery_capacity_s2 = seperate(battery_capacity_per_sector, 1)
battery_capacity_s3 = seperate(battery_capacity_per_sector, 2)
battery_capacity_s4 = seperate(battery_capacity_per_sector, 3)
battery_capacity_s5 = seperate(battery_capacity_per_sector, 4)
battery_capacity_s6 = seperate(battery_capacity_per_sector, 5)
battery_capacity_s7 = seperate(battery_capacity_per_sector, 6)