-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswa.py
88 lines (67 loc) · 3.36 KB
/
swa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import argparse
import pprint
import numpy as np
import torch
import torch.nn.functional as F
from datasets.dataloader import get_dataloader
# from transforms import get_transform
from models.model_factory import get_model
import utils.config
import utils.swa as swa
import utils.checkpoint
def get_checkpoints(config, num_checkpoint=10, epoch_end=None):
checkpoint_dir = os.path.join(config.TRAIN_DIR, 'checkpoints')
checkpoints = os.listdir(checkpoint_dir)
checkpoints = [name for name in checkpoints
if name.startswith('epoch') and name.endswith('pth')]
checkpoints = list(sorted([os.path.join(checkpoint_dir, f) for f in checkpoints]))
if epoch_end is not None:
checkpoints = checkpoints[epoch_end-num_checkpoint:epoch_end]
else:
checkpoints = checkpoints[-num_checkpoint:]
# if epoch_end is not None:
# epoch_begin = epoch_end - num_checkpoint + 1
# checkpoints = [os.path.join(checkpoint_dir, 'epoch.{:04d}.pth'.format(e))
# for e in range(epoch_begin, epoch_end+1)]
# checkpoints = [f for f in checkpoints if os.path.exists(f)]
# else:
# checkpoints = os.listdir(checkpoint_dir)
# checkpoints = [name for name in checkpoints
# if name.startswith('epoch') and name.endswith('pth')]
# checkpoints = list(sorted([os.path.join(checkpoint_dir, f) for f in checkpoints]))
# checkpoints = checkpoints[-num_checkpoint:]
return checkpoints
def run(config, num_checkpoint, epoch_end, output_filename):
dataloader = get_dataloader(config, split='val', transform=None)
model = get_model(config).cuda()
checkpoints = get_checkpoints(config, num_checkpoint, epoch_end)
utils.checkpoint.load_checkpoint(config, model, checkpoints[0])
for i, checkpoint in enumerate(checkpoints[1:]):
model2 = get_model(config).cuda()
last_epoch, _, _ = utils.checkpoint.load_checkpoint(config, model2, checkpoint)
swa.moving_average(model, model2, 1. / (i + 2))
with torch.no_grad():
swa.bn_update(dataloader, model)
# output_name = '{}.{}.{:03d}'.format(output_filename, num_checkpoint, last_epoch)
# print('save {}'.format(output_name))
utils.checkpoint.save_checkpoint(config, model, None, None, epoch_end,
weights_dict={'state_dict': model.state_dict()},
name=output_filename)
def parse_args():
parser = argparse.ArgumentParser(description='hpa')
parser.add_argument('--config', dest='config_file', help='configuration filename', default='configs/seg.yml', type=str)
parser.add_argument('--output', dest='output_filename', help='output filename', default='swa_fold1_b5', type=str)
parser.add_argument('--num_checkpoint', dest='num_checkpoint', help='number of checkpoints for averaging', default=10, type=int)
parser.add_argument('--epoch_end', dest='epoch_end', help='epoch end', default=30, type=int)
return parser.parse_args()
def main():
args = parse_args()
if args.config_file is None:
raise Exception('no configuration file')
config = utils.config.load(args.config_file)
pprint.PrettyPrinter(indent=2).pprint(config)
run(config, args.num_checkpoint, args.epoch_end, args.output_filename)
print('success!')
if __name__ == '__main__':
main()