-
Notifications
You must be signed in to change notification settings - Fork 1
/
threat_classification.py
executable file
·279 lines (237 loc) · 10.1 KB
/
threat_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import io
import time
import argparse
import numpy as np
import pandas as pd
from skimage.io import imsave
import skimage.io as skimage_io
import json
# custom scripts:
import gabor_features
import resize_image
import base64
# OpenCV:
import cv2
from pysparkling import Context
# from pyspark import SparkContext, SparkConf
import multiprocessing
from functools import partial
# for classifying:
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten, Dropout
from keras.utils import np_utils
from keras.optimizers import SGD
from keras.regularizers import l2
from keras.models import model_from_json
from sklearn.externals import joblib
from sklearn import metrics
from test_models_nn import get_X_single_file
def image_processing_cstringio(cstring_object, num_rows, num_cols):
resized_filename = resize_image.resize_image_ocr_cstringio(cstring_object, num_rows, num_cols)
#OpenCV addition:
# ----------------------
img = cv2.imread(resized_filename,0)
img = cv2.medianBlur(img,3)
(thresh, im_bw) = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
im_adaptive_filename = io.StringIO()
imsave(im_adaptive_filename, im_bw)
return im_adaptive_filename
def resize_image_and_get_full_gabor_features(cstring_image_obj, num_rows, num_cols):
resized_filename = resize_image.resize_image_cstringio(cstring_image_obj, num_rows, num_cols)
num_levels = 3
num_orientations = 8
gabor_features_vec = gabor_features.get_gabor_features_texture_classification(resized_filename, num_levels, num_orientations)
print('Dimension of gabor feature vec is %d' % gabor_features_vec.shape[1])
# print type(gabor_features_vec)
print(gabor_features_vec.shape)
return gabor_features_vec
def get_hog_features(cstring_image_obj):
# file_full_path = cstring_image_obj.read()
bin_n = 16
img = skimage_io.imread(cstring_image_obj)
# print img.size
# img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
mag, ang = cv2.cartToPolar(gx, gy)
# quantizing binvalues in (0...16)
bins = np.int32(bin_n*ang/(2*np.pi))
# Divide to 4 sub-squares
img_shape = bins.shape
num_rows = img_shape[0]
num_cols = img_shape[1]
# Below 4 squares:
# Top-left, bottom-left, top-right, bottom-right
# bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
# mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
row_bound_1 = (num_rows/2) + int(0.1*(num_rows/2))
row_bound_2 = (num_rows/2) - int(0.1*(num_rows/2))
col_bound_1 = (num_cols/2) + int(0.1*(num_cols/2))
col_bound_2 = (num_cols/2) - int(0.1*(num_cols/2))
bin_cells = bins[:row_bound_1, :col_bound_1], bins[row_bound_2:, :col_bound_1], bins[:row_bound_1, col_bound_2:], bins[row_bound_2:, col_bound_2:]
mag_cells = mag[:row_bound_1, :col_bound_1], mag[row_bound_2:, :col_bound_1], mag[:row_bound_1, col_bound_2:], mag[row_bound_2:, col_bound_2:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists)
# 2nd derivative:
gx = cv2.Sobel(img, cv2.CV_32F, 2, 0)
gy = cv2.Sobel(img, cv2.CV_32F, 0, 2)
mag, ang = cv2.cartToPolar(gx, gy)
# quantizing binvalues in (0...16)
bins = np.int32(bin_n * ang / (2 * np.pi))
# Divide to 4 sub-squares
# Below 4 squares:
# Top-left, bottom-left, top-right, bottom-right
bin_cells = bins[:row_bound_1, :col_bound_1], bins[row_bound_2:, :col_bound_1], bins[:row_bound_1,col_bound_2:], bins[row_bound_2:,col_bound_2:]
mag_cells = mag[:row_bound_1, :col_bound_1], mag[row_bound_2:, :col_bound_1], mag[:row_bound_1, col_bound_2:], mag[row_bound_2:,col_bound_2:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist2 = np.hstack(hists)
hist_two_deriv = np.hstack((hist, hist2))
print('HOG feature vector shape:')
print(hist_two_deriv.shape)
return hist_two_deriv
def serialize(subdir, file_i):
file_full_path = os.path.join(subdir, file_i)
f = open(file_full_path, 'r').read()
byte_data = base64.b64encode(f)
dict = {}
dict["name"] = file_full_path
dict["bytes"] = byte_data
print('----SERIALIZING----')
return json.dumps(dict)
def serialize_and_make_df(image_dir_path):
for subdir, dirs, files in os.walk(image_dir_path):
try:
cpus = multiprocessing.cpu_count()
except NotImplementedError:
cpus = 2
pool = multiprocessing.Pool(processes=cpus)
# print pool.map(serialize, files)
func = partial(serialize, subdir)
data = pool.map(func, files)
return data
def dump(x):
return json.dumps(x)
# Returns hog and gist feature vector as a list
# If features cannot be extracted from image, return
# sentinel vector - a list of -1's, [-1, -1, ..., -1]
def get_hog_and_gist_feats(bytes_str, num_rows, num_cols):
img_data = str(base64.b64decode(bytes_str))
cstring_image_obj = io.StringIO(img_data)
try:
hog_features_vec = get_hog_features(cstring_image_obj)
gabor_features_vec = resize_image_and_get_full_gabor_features(cstring_image_obj, num_rows, num_cols)
gabor_features_vec = gabor_features_vec.reshape(gabor_features_vec.shape[1], 1)
supp_feat_vec = np.vstack((gabor_features_vec, hog_features_vec.reshape(hog_features_vec.shape[0], 1)))
# print 'Full vec shape is:'
# print supp_feat_vec.shape
return supp_feat_vec.flatten().tolist()
except Exception as e:
print(e)
# print("ERROR reading image file %s" % str(bytes_str))
print()
CURR_NUM_FEATURES = 152
sentinel_vec = -1*np.ones(CURR_NUM_FEATURES)
return sentinel_vec.tolist()
def get_features(image_json_txt_obj):
print('---------------PROCESSING IMAGE----------------')
image_json_dict = json.loads(image_json_txt_obj)
bytes_str = str(image_json_dict["bytes"])
num_rows = num_cols = 100
features = get_hog_and_gist_feats(bytes_str, num_rows, num_cols)
image_json_dict["features"] = features
# debugging:
image_json_dict["bytes"] = ""
return image_json_dict
def get_threat_nonthreat_str_arr_from_predictions(y):
t_nt_str_arr = []
for prediction_i in y:
if(prediction_i == 0):
nonthreat_str = 'nonthreat'
t_nt_str_arr.append(nonthreat_str)
else:
threat_str = 'threat'
t_nt_str_arr.append(threat_str)
return t_nt_str_arr
def write_classifications_to_file(src_file, threat_nonthreat_arr, dst_file):
with open(src_file, 'r') as in_fd:
with open(dst_file, 'w') as out_fd:
count = 0
for line in in_fd:
json_obj = json.loads(line)
json_obj["features"] = ''
json_obj["classification"] = threat_nonthreat_arr[count]
json_line_str = json.dumps(json_obj)
out_fd.write(json_line_str + '\n')
count += 1
return
# For each image file submitted for processing,
# saves features and corresponding filename as json object
# ------------------------------------------
# NOTE: for each json object in output, check first element of "features" list for -1.
# If equals -1, then method was unable to extract features from the image
def run_feature_extraction():
start_time = time.time()
desc='Threat Classification for Images'
parser = argparse.ArgumentParser(
description=desc,
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=desc)
default_path = 'target_images'
parser.add_argument("--input_dir", help="input directory", default=default_path)
# parser.add_argument("--output", help="output file", default='image_features')
parser.add_argument("--time_of_day", help="night or day", default=default_path)
args = parser.parse_args()
# serialize and put all images in rdd:
# use json schema:
# "name": "",
# "bytes": ""
# "features": "[]"
image_dir_path = args.input_dir
data_arr = serialize_and_make_df(image_dir_path)
# pysparkling:
sc = Context()
# pyspark:
# conf = SparkConf().setAppName("HOG and GIST ETL")
# sc = SparkContext(conf=conf)
# featurize input images
num_parts = 100
rdd = sc.parallelize(data_arr, num_parts)
# submit image rdd to processing
rdd_features = rdd.map(get_features)
# save as txt file:
output_dir = 'imgs_features'
rdd_features.map(dump).coalesce(1).saveAsTextFile(output_dir)
print("------------------ %f minutes elapsed for featurization ------------------------" % ((time.time() - start_time)/60.0))
# CLASSIFY:
# get night or day:
if(args.time_of_day == 'night'):
scalar_model_filename = 'standardization_object_night_threat_detection.pkl'
nn_model_filename = 'nn_model_night_threat_detection'
else:
scalar_model_filename = 'standardization_object_day_threat_detection.pkl'
nn_model_filename = 'nn_model_day_threat_detection'
# load classifier
model_name = nn_model_filename
json_file = open(model_name + '.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(model_name + ".h5")
print("Loaded model from disk")
model = loaded_model
# load standardization object:
scalar = joblib.load(scalar_model_filename)
# standardize X (featurized_input_imgs) using standardization object
X = get_X_single_file(output_dir)
X_scaled = scalar.transform(X)
# classify X (input images) and output results
# 0 == nonthreat, 1 == threat:
y_hat = model.predict_classes(X_scaled)
threat_nonthreat_arr = get_threat_nonthreat_str_arr_from_predictions(y_hat)
classifications_filename = 'imgs_classifications'
write_classifications_to_file(output_dir, threat_nonthreat_arr, classifications_filename)
if __name__ == '__main__':
run_feature_extraction()