-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnext_half_precision.py
145 lines (97 loc) · 4.05 KB
/
resnext_half_precision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import torch
from torch import nn
from torchvision.datasets import CIFAR10
from torchvision import transforms
from models.resnext import ResNeXt29_4x64d
from tqdm import trange
from torch.cuda.amp import GradScaler
'''
half precision: num_workers=2, no checkpoint, FP16
'''
num_epochs = 10
batch_size = 128
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_data = CIFAR10(root = "./data/", transform = transform_train, train = True, download = True)
train_data_loader = torch.utils.data.DataLoader(dataset = train_data, batch_size = batch_size, shuffle = True, num_workers=2)
testset = CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2)
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.kaiming_uniform_(m.weight)
model = ResNeXt29_4x64d()
# model.fc = nn.Linear(in_features=model.fc.in_features, out_features=10)
model.apply(init_weights)
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
loss = nn.CrossEntropyLoss()
training_loss = []
training_acc = []
testing_acc = []
def test(model):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
return 100.*correct / total
scaler = GradScaler()
with torch.autograd.profiler.emit_nvtx():
torch.cuda.nvtx.range_push("training resnext half precision")
for i in trange(num_epochs):
torch.cuda.nvtx.range_push(f"epoch {i}")
model.train()
running_loss = 0
correct = 0
for j, (x, y) in enumerate(train_data_loader):
if j > 0:
torch.cuda.nvtx.range_pop() #data load
torch.cuda.nvtx.range_push(f"epoch {i} - step {j}")
torch.cuda.nvtx.range_push("data copy")
x = x.cuda()
y = y.cuda()
torch.cuda.nvtx.range_pop() #data copy
torch.cuda.nvtx.range_push("zero grad")
optimizer.zero_grad()
torch.cuda.nvtx.range_pop() #zero grad
with torch.autocast(device_type='cuda', dtype=torch.float16):
torch.cuda.nvtx.range_push("forward")
y_hat = model(x)
torch.cuda.nvtx.range_pop() #forward
l = loss(y_hat, y)
scaler.scale(l).backward()
torch.cuda.nvtx.range_push("optimizer")
scaler.step(optimizer)
torch.cuda.nvtx.range_pop() #optimizer
scaler.update()
running_loss += l.item() * x.size(0)
_, predicted = y_hat.max(1)
correct += predicted.eq(y).sum().item()
torch.cuda.nvtx.range_pop() #step
if j < len(train_data_loader)-1:
torch.cuda.nvtx.range_push("data load")
training_loss.append(running_loss / 50000)
training_acc.append(100*correct / 50000)
torch.cuda.nvtx.range_push("validation")
testing_acc.append(test(model))
torch.cuda.nvtx.range_pop() #validation
# if i % 50 == 49:
# torch.save(model.state_dict(), f"model_history/resnest_baseline_epoch{i+1}.pt")
torch.cuda.nvtx.range_pop() # epoch
torch.cuda.nvtx.range_pop()
torch.save(model.state_dict(), "model_history/resnext_half_precision.pt")
np.savez("model_history/resnext_half_precision.npz", loss=training_loss, acc=training_acc, test_acc=testing_acc)