This repository has been archived by the owner on May 25, 2023. It is now read-only.
forked from wangzhecheng/DeepSolar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_classification.py
147 lines (111 loc) · 5.28 KB
/
test_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""Evaluate Inception-v3 model on test(eval) set."""
import sys
import os.path
import re
import time
import pickle
import csv
import numpy as np
import tensorflow as tf
import skimage
import skimage.io
import skimage.transform
import pickle
from collections import deque
from inception import inception_model as inception
from inception.slim import slim
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('ckpt_dir', 'ckpt/inception_classification',
"""Directory for restoring trained model checkpoints.""")
BATCH_SIZE = 100
IMAGE_SIZE = 299
NUM_CLASSES = 2
THRESHOLD = 0.5 # softmax score threshold of classifying a sample to be positive.
def load_image(path):
img = skimage.io.imread(path)
resized_img = skimage.transform.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
if resized_img.shape[2] != 3:
resized_img = resized_img[:, :, 0:3]
return resized_img
def generate_eval_set():
# load all train data and return a deque contains all images
# and corresponding labels.
try:
with open('test_set_list', 'r') as f:
eval_set_list = pickle.load(f)
print('Eval set size: ' + str(len(eval_set_list)))
except:
raise EnvironmentError('Data list not existed. Please run generate_data_list.py first.')
eval_set_queue = deque(eval_set_list)
return eval_set_queue
def test():
# load eval set queue.
eval_set_queue = generate_eval_set()
# build the tensorflow graph.
with tf.Graph().as_default() as g:
img_placeholder = tf.placeholder(tf.float32, shape=[BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
logits, _ = inception.inference(img_placeholder, NUM_CLASSES)
saver = tf.train.Saver(tf.all_variables())
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=True))
with sess:
if ckpt and ckpt.model_checkpoint_path:
# Restores from checkpoint
saver.restore(sess, ckpt.model_checkpoint_path)
print('Checkpoint loaded')
else:
print('No checkpoint file found')
result_list = []
stats = {}
stats['r'] = [0, 0, 0] # [TP, FP, FN] for residential.
stats['d'] = [0, 0, 0] # [TP, FP, FN] for downtown/commercial.
# initialize the result
for ind in xrange(1, 66):
result_list.append([ind, 0, 0, 0, 0]) #[region_index, TP, TN, FP, FN]
for step in xrange(1, 936):
start_time = time.time()
# load data
minibatch = []
for count in xrange(0, BATCH_SIZE):
element = eval_set_queue.pop()
minibatch.append(element)
image_list = [load_image(d[0]) for d in minibatch]
label_list = [d[1] for d in minibatch]
index_list = [d[2] for d in minibatch]
type_list = [d[4] for d in minibatch]
image_batch = np.array(image_list)
image_batch = np.reshape(image_batch, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
score = sess.run(logits, feed_dict={img_placeholder: image_batch})
pos_score = np.exp(score[:, 1])/(np.exp(score[:, 1])+np.exp(score[:, 0]))
for i in xrange(BATCH_SIZE):
if label_list[i][0] == 1 and pos_score[i] >= THRESHOLD: #TP
result_list[index_list[i]-1][1] += 1
stats[type_list[i]][0] += 1
elif label_list[i][0] == 1 and pos_score[i] < THRESHOLD: # FN
result_list[index_list[i]-1][4] += 1
stats[type_list[i]][2] += 1
elif label_list[i][0] == 0 and pos_score[i] < THRESHOLD: # TN
result_list[index_list[i]-1][2] += 1
elif label_list[i][0] == 0 and pos_score[i] >= THRESHOLD: # FP
result_list[index_list[i]-1][3] += 1
stats[type_list[i]][1] += 1
duration = time.time() - start_time
print("Batch " + str(step) + ", Duration: " + str(duration)+ "s, # images left: " + str(len(eval_set_queue)))
# write csv
with open(os.path.join("eval_result.csv"), 'wb') as f:
writer = csv.writer(f)
writer.writerow(['region', 'TP', 'TN', 'FP', 'FN'])
writer.writerows(result_list)
f.close()
# print precision and recall.
precision_r = float(stats['r'][0])/float(stats['r'][0] + stats['r'][1] + 0.00000001)
recall_r = float(stats['r'][0])/float(stats['r'][0] + stats['r'][2] + + 0.00000001)
precision_d = float(stats['d'][0]) / float(stats['d'][0] + stats['d'][1] + 0.00000001)
recall_d = float(stats['d'][0]) / float(stats['d'][0] + stats['d'][2] + + 0.00000001)
print ('############ RESULTS ############')
print ('Residential: precision: ' + str(precision_r) + ' recall: '+str(recall_r))
print ('Commercial: precision: ' + str(precision_d) + ' recall: ' + str(recall_d))
print ('See region level analysis in eval_result.csv')
if __name__ == '__main__':
test()