This repository has been archived by the owner on May 25, 2023. It is now read-only.
forked from wangzhecheng/DeepSolar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_segmentation.py
224 lines (184 loc) · 10.3 KB
/
test_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""Generate Class Activation Map for positive samples in """
import sys
sys.path.append('/home/ubuntu/vgg_data/code')
import copy
import os.path
import re
import numpy as np
import tensorflow as tf
import skimage
import skimage.io
import skimage.transform
import pickle
import csv
from collections import deque
# from inception import image_processing
from inception import inception_model as inception
from inception.slim import slim
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('classification_ckpt_restore_dir', 'ckpt/inception_classification',
""" Directory for restoring parameters of classification model. """)
tf.app.flags.DEFINE_string('segmentation_ckpt_restore_dir', 'ckpt/inception_segmentation',
""" Directory for restoring parameters of segmentation branch. """)
tf.app.flags.DEFINE_string('eval_set_dir', 'SPI_eval',
""" Directory of test set. """)
# basic parameters
BATCH_SIZE = 1
IMAGE_SIZE = 299
NUM_CLASSES = 2
SEGMENTATION_THRES = 0.37 # threshold for segmenting solar panel
RESULT_DIR = 'segmentation_results'
def load_image(path):
# load and prepocess image
img = skimage.io.imread(path)
resized_img = skimage.transform.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
if resized_img.shape[2] != 3:
resized_img = resized_img[:, :, 0:3]
return resized_img
def rescale_CAM(classmap_val):
# rescale class activation map to [0, 1].
CAM_rescale = map(lambda x: ((x - x.min()) / (x.max() - x.min())), classmap_val)
CAM_rescale = CAM_rescale[0]
return CAM_rescale
def generate_eval_set():
# load all train data and return a deque contains all images
# and corresponding labels.
try:
with open('test_set_list', 'r') as f:
eval_set_list = pickle.load(f)
print('Eval set size: ' + str(len(eval_set_list)))
except:
raise EnvironmentError('Data list not existed. Please run generate_data_list.py first.')
eval_set_queue = deque(eval_set_list)
return eval_set_queue
def test():
eval_set_queue = generate_eval_set()
with tf.Graph().as_default() as g:
img_placeholder = tf.placeholder(tf.float32, shape=[1, IMAGE_SIZE, IMAGE_SIZE, 3])
logits, _, feature_map = inception.inference(img_placeholder, NUM_CLASSES)
with tf.name_scope('conv_aux_1') as scope:
kernel1 = tf.Variable(tf.truncated_normal([3, 3, 288, 512], dtype=tf.float32, stddev=1e-4), name='weights')
conv = tf.nn.conv2d(feature_map, kernel1, [1, 1, 1, 1], padding='SAME')
biases1 = tf.Variable(tf.constant(0.1, shape=[512], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases1)
conv_aux = tf.nn.relu(bias, name=scope)
with tf.name_scope('conv_aux_2') as scope:
kernel2 = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-4), name='weights')
conv = tf.nn.conv2d(conv_aux, kernel2, [1, 1, 1, 1], padding='SAME')
biases2 = tf.Variable(tf.constant(0.1, shape=[512], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases2)
conv_aux = tf.nn.relu(bias, name=scope)
GAP = tf.reduce_mean(conv_aux, [1, 2])
W = tf.get_variable(name='W', shape=[512, 2], initializer=tf.random_normal_initializer(0., 0.01))
conv_map_resized = tf.image.resize_bilinear(conv_aux, [100, 100])
# get weights connected to definite class.
W_c = tf.gather(tf.transpose(W), 1)
W_c = tf.reshape(W_c, [-1, 512, 1])
conv_map_resized = tf.reshape(conv_map_resized, [-1, 100 * 100, 512])
CAM = tf.batch_matmul(conv_map_resized, W_c)
CAM = tf.reshape(CAM, [-1, 100, 100])
# Construct saver
variables_to_restore = tf.get_collection(slim.variables.VARIABLES_TO_RESTORE)
print variables_to_restore
saver1 = tf.train.Saver(variables_to_restore)
saver2 = tf.train.Saver(var_list=[W, kernel2, biases2, kernel1, biases1])
with tf.Session() as sess:
# restore model parameters.
checkpoint1 = tf.train.get_checkpoint_state(FLAGS.classification_ckpt_restore_dir)
if checkpoint1 and checkpoint1.model_checkpoint_path:
saver1.restore(sess, checkpoint1.model_checkpoint_path)
print("Successfully loaded:", checkpoint1.model_checkpoint_path)
else:
print("Could not find old network weights")
checkpoint2 = tf.train.get_checkpoint_state(FLAGS.segmentation_ckpt_restore_dir)
if checkpoint2 and checkpoint2.model_checkpoint_path:
saver2.restore(sess, checkpoint2.model_checkpoint_path)
print("Successfully loaded:", checkpoint2.model_checkpoint_path)
else:
print("Could not find old network weights")
stats = {}
stats['r'] = [0, 0, 0] # [TP, FP, FN] for residential.
stats['d'] = [0, 0, 0] # [TP, FP, FN] for downtown/commercial.
area_error = {}
area_error['r'] = []
area_error['d'] = []
# store both true and estimate total pixel areas for each region
true_total_area = {}
for i in xrange(1, 66):
true_total_area[i] = 0.0
estimiate_total_area = {}
for i in xrange(1, 66):
estimiate_total_area[i] = 0.0
for step in xrange(1, len(eval_set_queue)+1):
print ('Processing '+str(step)+'/'+str(len(eval_set_queue))+'...')
img_path, label, region_index, img_index, region_type = eval_set_queue.pop()
img = load_image(img_path)
img_batch = np.reshape(img, [1, IMAGE_SIZE, IMAGE_SIZE, 3])
score = sess.run(logits, feed_dict={img_placeholder: img_batch})
pos_prob = np.exp(score[0, 1]) / (np.exp(score[0, 1]) + np.exp(score[0, 0]))
if pos_prob >= 0.5:
# generate CAM for that sample
CAM_val = sess.run(CAM, feed_dict={img_placeholder: img_batch})
CAM_val = rescale_CAM(CAM_val)
pred_pixel_area = np.sum(CAM_val > SEGMENTATION_THRES) # predicted/estimated pixel area
estimiate_total_area[region_index] += pred_pixel_area
if label == [0]: # FP
stats[region_type][1] += 1
# save original image and CAM.
skimage.io.imsave(os.path.join(RESULT_DIR, 'FP', str(region_index) + '_' + str(img_index) + '_original.png'), img)
skimage.io.imsave(os.path.join(RESULT_DIR, 'FP', str(region_index) + '_' + str(img_index) + '_CAM.png'), img)
else: # TP
stats[region_type][0] += 1
# save original image and CAM.
skimage.io.imsave(os.path.join(RESULT_DIR, 'TP', str(region_index) + '_' + str(img_index) + '_original.png'),img)
skimage.io.imsave(os.path.join(RESULT_DIR, 'TP', str(region_index) + '_' + str(img_index) + '_CAM.png'), img)
# compare with ground truth segmentation.
true_seg_img = skimage.io.imread(os.path.join(FLAGS.eval_set_dir, str(region_index), str(img_index)+'_true_seg.png'))
true_seg_img /= 255.0
true_pixel_area = np.sum(true_seg_img)
true_pixel_area = true_pixel_area * (100 * 100) / (320 * 320)
true_total_area[region_index] += true_pixel_area
area_error[region_type].append(true_pixel_area - pred_pixel_area)
else:
if label == [1]: # FN
stats[region_type][2] += 1
true_seg_img = skimage.io.imread(
os.path.join(FLAGS.eval_set_dir, str(region_index), str(img_index) + '_true_seg.png'))
true_seg_img /= 255.0
true_pixel_area = np.sum(true_seg_img)
true_pixel_area = true_pixel_area * (100 * 100) / (320 * 320)
true_total_area[region_index] += true_pixel_area
# report precision and recall and absolute error rate.
abs_error_sum_r = 0
for e in area_error['r']:
abs_error_sum_r += abs(e)
abs_error_rate_r = float(abs_error_sum_r)/float(len(area_error['r']))
abs_error_sum_d = 0
for e in area_error['d']:
abs_error_sum_d += abs(e)
abs_error_rate_d = float(abs_error_sum_d) / float(len(area_error['d']))
precision_r = float(stats['r'][0]) / float(stats['r'][0] + stats['r'][1] + 0.00000001)
recall_r = float(stats['r'][0]) / float(stats['r'][0] + stats['r'][2] + + 0.00000001)
precision_d = float(stats['d'][0]) / float(stats['d'][0] + stats['d'][1] + 0.00000001)
recall_d = float(stats['d'][0]) / float(stats['d'][0] + stats['d'][2] + + 0.00000001)
print ('############ RESULTS ############')
print ('Residential: precision: ' + str(precision_r) + ' recall: ' + str(recall_r) +
' average absolute error rate: ' + str(abs_error_rate_r))
print ('Commercial: precision: ' + str(precision_d) + ' recall: ' + str(recall_d) +
' average absolute error rate: ' + str(abs_error_rate_d))
# save csv for region-level comparison of true total area and estimated total area.
result_list = []
for i in xrange(1, 66):
result_list.append([i, true_total_area[i], estimiate_total_area[i],
float(estimiate_total_area[i] - true_total_area[i])/float(true_total_area[i])])
with open(os.path.join("region_level_area_estimation.csv"), 'wb') as f:
writer = csv.writer(f)
writer.writerow(['region', 'true pixel area', 'estimiated pixel area', 'relative difference'])
writer.writerows(result_list)
f.close()
if __name__ == '__main__':
if not os.path.exists(RESULT_DIR):
os.mkdir(RESULT_DIR)
os.mkdir(os.path.join(RESULT_DIR, 'TP'))
os.mkdir(os.path.join(RESULT_DIR, 'FP'))
test()