This repository has been archived by the owner on May 25, 2023. It is now read-only.
forked from wangzhecheng/DeepSolar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_segmentation.py
195 lines (154 loc) · 7.9 KB
/
train_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
Greedy layerwise training for weakly-supervised solar panel segmentation.
We need to train first layer in the branch and then train the second layer
but fix the first layer. FLAGS.two_layers determines which mode to run.
"""
import sys
import copy
from datetime import datetime
import os.path
import re
import time
import numpy as np
import tensorflow as tf
import skimage
import skimage.io
import skimage.transform
import random
import pickle
from collections import deque
from inception import inception_model as inception
from inception.slim import slim
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('two_layers', False,
""" If true, two layers in the segmentation branch,
else one layer. """)
tf.app.flags.DEFINE_string('ckpt_save_dir', 'ckpt/inception_segmentation',
"""Directory for saving model checkpoint. """)
tf.app.flags.DEFINE_string('ckpt_restore_dir', 'ckpt/inception_segmentation',
"""Directory for restoring first layer. """)
tf.app.flags.DEFINE_string('classification_ckpt_restore_dir', 'ckpt/inception_classification',
""" Directory for restoring parameters of classification model. """)
tf.app.flags.DEFINE_integer('max_steps', 15000,
"""Number of batches to run.""")
tf.app.flags.DEFINE_float('learning_rate', 0.005,
"""learning rate.""")
# basic parameters
BATCH_SIZE = 64
IMAGE_SIZE = 299
NUM_CLASSES = 2
def load_image(path):
# load and prepocess image
rotate_angle_list = [0, 90, 180, 270]
img = skimage.io.imread(path)
resized_img = skimage.transform.resize(img, (IMAGE_SIZE, IMAGE_SIZE))
if resized_img.shape[2] != 3:
resized_img = resized_img[:, :, 0:3]
rotate_angle = random.choice(rotate_angle_list)
image = skimage.transform.rotate(resized_img, rotate_angle)
return image
def train():
# load train set list and transform it to queue. For time concern, we recommmend use a subset of training set
# to fine-tune the segmentation branch.
try:
with open('train_set_list.pickle', 'r') as f:
train_set_list = pickle.load(f)
except:
raise EnvironmentError('Data list not existed. Please run generate_data_list.py first.')
random.shuffle(train_set_list)
train_set_queue = deque(train_set_list)
train_set_size = len(train_set_list)
del train_set_list
print ('Training set built. Size: '+str(train_set_size))
# build the tensorflow graph
with tf.Graph().as_default() as g:
images = tf.placeholder(tf.float32, shape=[BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
labels = tf.placeholder(tf.int32, shape=[BATCH_SIZE])
# get the feature map after layer 'mixed_35x35x288b' from classification model.
_, _, feature_map = inception.inference(images, NUM_CLASSES)
with tf.name_scope('conv_aux_1') as scope:
kernel1 = tf.Variable(tf.truncated_normal([3, 3, 288, 512], dtype=tf.float32, stddev=1e-4), name='weights')
conv = tf.nn.conv2d(feature_map, kernel1, [1, 1, 1, 1], padding='SAME')
biases1 = tf.Variable(tf.constant(0.1, shape=[512], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases1)
conv_aux = tf.nn.relu(bias, name=scope)
if FLAGS.two_layers:
with tf.name_scope('conv_aux_2') as scope:
kernel2 = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-4), name='weights')
conv = tf.nn.conv2d(conv_aux, kernel2, [1, 1, 1, 1], padding='SAME')
biases2 = tf.Variable(tf.constant(0.1, shape=[512], dtype=tf.float32), trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases2)
conv_aux = tf.nn.relu(bias, name=scope)
# global average pooling.
GAP = tf.reduce_mean(conv_aux, [1, 2])
# linear classifier.
W = tf.get_variable(name='W', shape=[512, 2], initializer=tf.random_normal_initializer(0., 0.01))
logits = tf.matmul(GAP, W)
# compute loss.
cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels))
if FLAGS.two_layers:
train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(cross_entropy,
var_list=[W, kernel2, biases2])
saver = tf.train.Saver(var_list=[W, kernel2, biases2, kernel1, biases1])
else:
train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize(cross_entropy,
var_list=[W, kernel1, biases1])
saver = tf.train.Saver(var_list=[W, kernel1, biases1])
init = tf.global_variables_initializer()
# open session and initialize
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=True))
sess.run(init)
# restore old checkpoint
variables_to_restore = tf.get_collection(
slim.variables.VARIABLES_TO_RESTORE)
restorer1 = tf.train.Saver(variables_to_restore)
checkpoint1 = tf.train.get_checkpoint_state(FLAGS.classification_ckpt_restore_dir)
if checkpoint1 and checkpoint1.model_checkpoint_path:
restorer1.restore(sess, checkpoint1.model_checkpoint_path)
print("Successfully loaded:", checkpoint1.model_checkpoint_path)
else:
print("Could not find old network weights")
# If adding second layer, then the first layer should be restored.
if FLAGS.two_layers:
restorer2 = tf.train.Saver(var_list=[kernel1, biases1])
checkpoint2 = tf.train.get_checkpoint_state(FLAGS.ckpt_restore_dir)
if checkpoint2 and checkpoint2.model_checkpoint_path:
restorer2.restore(sess, checkpoint2.model_checkpoint_path)
print("Successfully loaded:", checkpoint2.model_checkpoint_path)
else:
print("Could not find old network weights")
step = 1
train_record = []
while step <= FLAGS.max_steps:
start_time = time.time()
# construct image batch and label batch for one step train.
minibatch = []
for count in xrange(0, BATCH_SIZE):
element = train_set_queue.pop()
minibatch.append(element)
train_set_queue.appendleft(element)
image_list = [load_image(d[0]) for d in minibatch]
label_list = [d[1] for d in minibatch]
image_batch = np.array(image_list)
label_batch = np.array(label_list)
image_batch = np.reshape(image_batch, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
label_batch = np.reshape(label_batch, [BATCH_SIZE])
_, loss_value = sess.run([train_step, cross_entropy], feed_dict={images: image_batch, labels: label_batch})
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step == 1 or step % 10 == 0:
num_examples_per_step = BATCH_SIZE
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print(format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# Save the model checkpoint periodically.
if step == 1 or step % 1000 == 0:
checkpoint_path = os.path.join(FLAGS.ckpt_save_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
step += 1
if __name__ == '__main__':
train()