You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
where $\beta\in\mathbb{R}$ and $\mu\in\mathbb{R}$. Let $\boldsymbol{\alpha}=(\beta,\mu)^\top\in\mathbb{R}^2$ and $x_{\boldsymbol{\alpha}}$ be the optimal solution of Problem $(6)$ given $\boldsymbol{\alpha}$, we obtain $x_{\boldsymbol{\alpha}}=0$ by setting the derivative to zero as follows:
It is trivial that both component functions $\psi_1(\boldsymbol{\alpha},x_{\boldsymbol{\alpha}})=\beta$ and $\psi_2(\boldsymbol{\alpha},x_{\boldsymbol{\alpha}})=\mu-1$ are differentiable, thus $\psi(\boldsymbol{\alpha},x_{\boldsymbol{\alpha}})$ is differentiable. Given $\boldsymbol{\alpha}_1=(\beta_1,\mu_1)^\top$ and $\boldsymbol{\alpha}_2=(\beta_2,\mu_2)^\top$,
then $\psi(\boldsymbol{\alpha},x_{\boldsymbol{\alpha}})$ is Lipschitz continuous. Solving such (simple) case by FracGM guarantees that the solution is global optimal.
To verify the above statement empirically, we feed various initial guesses to FracGM to examine the global optimality as follows:
Initial Guess
FracGM's 1$^\text{st}$ Iteration
FracGM's 2$^\text{nd}$ Iteration
$-10^{5}$
$-2.20\times 10^{-4}$
$0.00\times 10^{-13}$
$-10^{3}$
$-1.92\times 10^{-10}$
$0.00\times 10^{-13}$
$-10^{1}$
$-5.10\times 10^{-8}$
$0.00\times 10^{-13}$
$-10^{0}$
$-2.73\times 10^{-9}$
$0.00\times 10^{-13}$
$10^{0}$
$-2.73\times 10^{-9}$
$0.00\times 10^{-13}$
$10^{1}$
$-5.10\times 10^{-8}$
$0.00\times 10^{-13}$
$10^{3}$
$-1.92\times 10^{-10}$
$0.00\times 10^{-13}$
$10^{5}$
$-2.20\times 10^{-4}$
$0.00\times 10^{-13}$
🏃 Run
cd appendix/appx_A
python ./main.py
We test various random initial guess between -100000 and 100000, all solutions converge to 0.