-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathag.m
110 lines (109 loc) · 3.6 KB
/
ag.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
function [x, stats] = ag(handles, x0, algparams)
arguments
handles (1,1) struct
x0 (:,1) double
algparams.maxit (1,1) double = Inf
algparams.maxfg (1,1) double = Inf
algparams.gtol (1,1) double = 1e-6
end
% [x,stat] = ag(handles, x0, algparams)
% Nesterov's accelerated gradient to minimize f(x)
% Input arguments:
% handles: a struct with the following fields (plus others not used here):
% fg: a function handle that takes x, an n-vector, and:
% returns [f(x), grad f(x)]
% L: a positive number, the smoothness modulus of f
% If L is NaN, this means true L is unknown, and ag should
% estimate it.
% ell: a nonnegative number, the strong convexity parameter of f
% If ell is NaN, this means it is unknown.
% fgcount(): a function with no arguments that returns the number of
% function-gradient evaluations so far. This is invoked only if
% algparams.maxfg < Inf.
% x0: an n-vector, the initial guess for the solution
%
% The following are optional keyword arguments
%
% maxit: a positive integer, the iteration limit. Default: Inf
% Inf means no limit.
% maxfg: a positive integer, the max number of fg evaluations
% default: Inf. Note: if this option is used, the handle
% must provide handle.fgcount() to count fg evaluations.
% Inf means no limit.
% gtol: a positive number, the termination criterion, i.e., stop
% when norm(grad f(x_k)) <= gtol. Default: 1e-6.
% Output arguments:
% x: an n-vector, the approximate optimizer
% stats: a struct with the following fields
% numit: number of iterations
% algname: a string with the name of the algorithm used
% success: was convergence achieved (boolean)
% other: unused
% Note that this function does not count function/gradient evaluations.
% It is the responsibility of handles.fg to count these.
%
[f,g] = handles.fg(x0);
L = handles.L;
ell = handles.ell;
if ~isinf(algparams.maxfg)
fgcount = @()(handles.fgcount());
else
fgcount = @()0;
end
fginit = fgcount();
y = x0; %y0
v = y; % v0
x = y; % x0
mnv = f;
maxit = algparams.maxit;
Lnan = isnan(L) || isnan(ell) || isinf(L) || isinf(ell);
stats = struct('numit', 0, ...
'other', '', ...
'success', false, ...
'algname', sprintf('AG(HaveL=%s)', string(~Lnan)));
if Lnan
L = estimateL2(x,f,g,handles.fg,1);
if isnan(L) || isinf(L)
error('Unable to estimate L from initial x')
end
if ~isnan(ell) && ell ~= 0
error('Input error: cannot specify ell when L=NaN')
end
ell = 0;
end
gamma = L;
it = 0;
while it < algparams.maxit && fgcount() - fginit < algparams.maxfg
it = it + 1;
stats.numit = it;
AA = L;
BB = gamma - ell;
CC = -gamma;
discr = BB^2 - 4 * AA * CC;
assert(discr >= 0)
theta = (2 * CC) / (-BB - sqrt(discr));
oldgamma = gamma; %gamma_k
gamma = (1 - theta) * oldgamma + theta * ell; %gamma_{k+1}
y = (theta * oldgamma * v + gamma * x) / (oldgamma + theta * ell); %y_k
[f,g] = handles.fg(y);
if norm(g) <= algparams.gtol
stats.success = true;
return
end
yk = y;
gk = g;
if Lnan
L = estimateL1(y, f, g, handles.fg, L);
end
x = y - g / L; % x_{k+1}
k1 = ell * norm(y - v) ^ 2 / 2 + g' * (v - y);
mnv = (1 - theta) * mnv + theta * f - ...
theta^2 * norm(g)^2 / (2 * gamma) + ...
theta * (1-theta) * oldgamma * k1 / gamma;
v = ((1 - theta)*oldgamma*v + ell*theta*yk - theta*gk) / gamma;
if any(isnan(v)) || any(isinf(v))
error('NaN/Inf encountered in AG')
end
end
stats.numit = maxit + 1;
end