forked from wzzheng/OccWorld
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_metric_stp3.py
338 lines (307 loc) · 14.3 KB
/
eval_metric_stp3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import time, argparse, os.path as osp, os
import torch, numpy as np
import torch.distributed as dist
from copy import deepcopy
import mmcv
from mmengine import Config
from mmengine.runner import set_random_seed
from mmengine.optim import build_optim_wrapper
from mmengine.logging import MMLogger
from mmengine.utils import symlink
from mmengine.registry import MODELS
from timm.scheduler import CosineLRScheduler, MultiStepLRScheduler
from utils.load_save_util import revise_ckpt, revise_ckpt_1
import warnings
warnings.filterwarnings("ignore")
def pass_print(*args, **kwargs):
pass
def main(local_rank, args):
# global settings
set_random_seed(args.seed)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
# load config
cfg = Config.fromfile(args.py_config)
cfg.work_dir = args.work_dir
# init DDP
if args.gpus > 1:
distributed = True
ip = os.environ.get("MASTER_ADDR", "127.0.0.1")
port = os.environ.get("MASTER_PORT", cfg.get("port", 29500))
hosts = int(os.environ.get("WORLD_SIZE", 1)) # number of nodes
rank = int(os.environ.get("RANK", 0)) # node id
gpus = torch.cuda.device_count() # gpus per node
print(f"tcp://{ip}:{port}")
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}",
world_size=hosts * gpus, rank=rank * gpus + local_rank)
world_size = dist.get_world_size()
cfg.gpu_ids = range(world_size)
torch.cuda.set_device(local_rank)
if local_rank != 0:
import builtins
builtins.print = pass_print
else:
distributed = False
world_size = 1
if local_rank == 0:
os.makedirs(args.work_dir, exist_ok=True)
cfg.dump(osp.join(args.work_dir, osp.basename(args.py_config)))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(args.work_dir, f'eval_stp3_{cfg.start_frame}_{cfg.mid_frame}_{cfg.end_frame}_{timestamp}.log')
logger = MMLogger('genocc', log_file=log_file)
MMLogger._instance_dict['genocc'] = logger
logger.info(f'Config:\n{cfg.pretty_text}')
# build model
import model
from dataset import get_dataloader, get_nuScenes_label_name
from loss import OPENOCC_LOSS
from utils.metric_util import MeanIoU, multi_step_MeanIou
from utils.freeze_model import freeze_model
my_model = MODELS.build(cfg.model)
my_model.init_weights()
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params: {n_parameters}')
if cfg.get('freeze_dict', False):
logger.info(f'Freezing model according to freeze_dict:{cfg.freeze_dict}')
freeze_model(my_model, cfg.freeze_dict)
n_parameters = sum(p.numel() for p in my_model.parameters() if p.requires_grad)
logger.info(f'Number of params after freezed: {n_parameters}')
if distributed:
if cfg.get('syncBN', True):
my_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(my_model)
logger.info('converted sync bn.')
find_unused_parameters = cfg.get('find_unused_parameters', False)
ddp_model_module = torch.nn.parallel.DistributedDataParallel
my_model = ddp_model_module(
my_model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters)
raw_model = my_model.module
else:
my_model = my_model.cuda()
raw_model = my_model
logger.info('done ddp model')
train_dataset_loader, val_dataset_loader = get_dataloader(
cfg.train_dataset_config,
cfg.val_dataset_config,
cfg.train_wrapper_config,
cfg.val_wrapper_config,
cfg.train_loader,
cfg.val_loader,
dist=distributed,
iter_resume=args.iter_resume)
# get optimizer, loss, scheduler
optimizer = build_optim_wrapper(my_model, cfg.optimizer)
loss_func = OPENOCC_LOSS.build(cfg.loss).cuda()
max_num_epochs = cfg.max_epochs
if cfg.get('multisteplr', False):
scheduler = MultiStepLRScheduler(
optimizer,
**cfg.multisteplr_config)
else:
scheduler = CosineLRScheduler(
optimizer,
t_initial=len(train_dataset_loader) * max_num_epochs,
lr_min=1e-6,
warmup_t=cfg.get('warmup_iters', 500),
warmup_lr_init=1e-6,
t_in_epochs=False)
# resume and load
epoch = 0
global_iter = 0
last_iter = 0
best_val_iou = [0]*cfg.get('return_len_', 10)
best_val_miou = [0]*cfg.get('return_len_', 10)
cfg.resume_from = ''
if osp.exists(osp.join(args.work_dir, 'latest.pth')):
cfg.resume_from = osp.join(args.work_dir, 'latest.pth')
if args.resume_from:
cfg.resume_from = args.resume_from
logger.info('resume from: ' + cfg.resume_from)
logger.info('work dir: ' + args.work_dir)
if cfg.resume_from and osp.exists(cfg.resume_from):
map_location = 'cpu'
ckpt = torch.load(cfg.resume_from, map_location=map_location)
print(raw_model.load_state_dict(ckpt['state_dict'], strict=False))
optimizer.load_state_dict(ckpt['optimizer'])
scheduler.load_state_dict(ckpt['scheduler'])
epoch = ckpt['epoch']
global_iter = ckpt['global_iter']
last_iter = ckpt['last_iter'] if 'last_iter' in ckpt else 0
if 'best_val_iou' in ckpt:
best_val_iou = ckpt['best_val_iou']
if 'best_val_miou' in ckpt:
best_val_miou = ckpt['best_val_miou']
if hasattr(train_dataset_loader.sampler, 'set_last_iter'):
train_dataset_loader.sampler.set_last_iter(last_iter)
print(f'successfully resumed from epoch {epoch}')
elif cfg.load_from:
ckpt = torch.load(cfg.load_from, map_location='cpu')
if 'state_dict' in ckpt:
state_dict = ckpt['state_dict']
else:
state_dict = ckpt
if cfg.get('revise_ckpt', False):
if cfg.revise_ckpt == 1:
print('revise_ckpt')
print(raw_model.load_state_dict(revise_ckpt(state_dict), strict=False))
elif cfg.revise_ckpt == 2:
print('revise_ckpt_1')
print(raw_model.load_state_dict(revise_ckpt_1(state_dict), strict=False))
elif cfg.revise_ckpt == 3:
print('revise_ckpt_2')
print(raw_model.vae.load_state_dict(state_dict, strict=False))
else:
print(raw_model.load_state_dict(state_dict, strict=False))
# training
print_freq = cfg.print_freq
first_run = True
grad_norm = 0
label_name = get_nuScenes_label_name(cfg.label_mapping)
unique_label = np.asarray(cfg.unique_label)
unique_label_str = [label_name[l] for l in unique_label]
CalMeanIou_sem = multi_step_MeanIou(unique_label, cfg.get('ignore_label', -100), unique_label_str, 'sem', times=cfg.get('eval_length'))
CalMeanIou_vox = multi_step_MeanIou([1], cfg.get('ignore_label', -100), ['occupied'], 'vox', times=cfg.get('eval_length'))
my_model.eval()
os.environ['eval'] = 'true'
val_loss_list = []
CalMeanIou_sem.reset()
CalMeanIou_vox.reset()
metric_stp3 = {
'plan_L2_1s':0,
'plan_L2_2s':0,
'plan_L2_3s':0,
'plan_obj_col_1s':0,
'plan_obj_col_2s':0,
'plan_obj_col_3s':0,
'plan_obj_box_col_1s':0,
'plan_obj_box_col_2s':0,
'plan_obj_box_col_3s':0,
'plan_L2_1s_single':0,
'plan_L2_2s_single':0,
'plan_L2_3s_single':0,
'plan_obj_col_1s_single':0,
'plan_obj_col_2s_single':0,
'plan_obj_col_3s_single':0,
'plan_obj_box_col_1s_single':0,
'plan_obj_box_col_2s_single':0,
'plan_obj_box_col_3s_single':0,
}
time_used = {
'encode':0,
'mid':0,
'autoreg':0,
'total':0,
'per_frame':0,
}
with torch.no_grad():
plan_loss = 0
for i_iter_val, (input_occs, target_occs, metas) in enumerate(val_dataset_loader):
input_occs = input_occs.cuda()
target_occs = target_occs.cuda()
data_time_e = time.time()
if cfg.get('eval_with_pose', False):
if not distributed:
result_dict = my_model.autoreg_for_stp3_metric(
x=input_occs, metas=metas,
start_frame=cfg.get('start_frame', 0),
mid_frame=cfg.get('mid_frame', 6),
end_frame=cfg.get('end_frame', 12))
else:
result_dict = my_model.module.autoreg_for_stp3_metric(
x=input_occs, metas=metas,
start_frame=cfg.get('start_frame', 0),
mid_frame=cfg.get('mid_frame', 6),
end_frame=cfg.get('end_frame', 12))
else:
raise NotImplementedError
for key in metric_stp3.keys():
metric_stp3[key] += result_dict['metric_stp3'][key]
for key in time_used.keys():
time_used[key] += result_dict['time'][key]
loss_input = {
'inputs': input_occs,
'target_occs': target_occs,
# 'metas': metas
}
for loss_input_key, loss_input_val in cfg.loss_input_convertion.items():
loss_input.update({
loss_input_key: result_dict[loss_input_val]
})
loss, loss_dict = loss_func(loss_input)
plan_loss += loss_dict.get('PlanRegLoss', 0)
plan_loss += loss_dict.get('PlanRegLossLidar', 0)
if result_dict.get('target_occs', None) is not None:
target_occs = result_dict['target_occs']
target_occs_iou = deepcopy(target_occs)
target_occs_iou[target_occs_iou != 17] = 1
target_occs_iou[target_occs_iou == 17] = 0
CalMeanIou_sem._after_step(result_dict['sem_pred'], target_occs)
CalMeanIou_vox._after_step(result_dict['iou_pred'], target_occs_iou)
val_loss_list.append(loss.detach().cpu().numpy())
if i_iter_val % print_freq == 0 and local_rank == 0:
logger.info('[EVAL] Epoch %d Iter %5d/%5d: Loss: %.3f (%.3f)'%(
epoch, i_iter_val,len(val_dataset_loader), loss.item(), np.mean(val_loss_list)))
detailed_loss = []
for loss_name, loss_value in loss_dict.items():
detailed_loss.append(f'{loss_name}: {loss_value:.5f}')
detailed_loss = ', '.join(detailed_loss)
logger.info(detailed_loss)
metric_stp3 = {key:metric_stp3[key]/len(val_dataset_loader) for key in metric_stp3.keys()}
time_used = {key:time_used[key]/len(val_dataset_loader) for key in time_used.keys()}
# reduce for distributed
if distributed:
plan_loss = torch.tensor(plan_loss, dtype=torch.float64).cuda()
dist.all_reduce(plan_loss)
plan_loss /= world_size
metric_stp3 = {key:torch.tensor(metric_stp3[key],dtype=torch.float64).cuda() for key in metric_stp3.keys()}
for key in metric_stp3.keys():
dist.all_reduce(metric_stp3[key])
metric_stp3[key] /= world_size
time_used = {key:torch.tensor(time_used[key],dtype=torch.float64).cuda() for key in time_used.keys()}
for key in time_used.keys():
dist.all_reduce(time_used[key])
time_used[key] /= world_size
metric_stp3.update(avg_l2=(metric_stp3['plan_L2_1s']+metric_stp3['plan_L2_2s']+metric_stp3['plan_L2_3s'])/3)
metric_stp3.update(avg_obj_col=(metric_stp3['plan_obj_col_1s']+metric_stp3['plan_obj_col_2s']+metric_stp3['plan_obj_col_3s'])/3)
metric_stp3.update(avg_obj_box_col=(metric_stp3['plan_obj_box_col_1s']+metric_stp3['plan_obj_box_col_2s']+metric_stp3['plan_obj_box_col_3s'])/3)
metric_stp3.update(avg_obj_box_col_single=(metric_stp3['plan_obj_box_col_1s_single']+metric_stp3['plan_obj_box_col_2s_single']+metric_stp3['plan_obj_box_col_3s_single'])/3)
metric_stp3.update(avg_obj_col_single=(metric_stp3['plan_obj_col_1s_single']+metric_stp3['plan_obj_col_2s_single']+metric_stp3['plan_obj_col_3s_single'])/3)
metric_stp3.update(avg_l2_single=(metric_stp3['plan_L2_1s_single']+metric_stp3['plan_L2_2s_single']+metric_stp3['plan_L2_3s_single'])/3)
for key in metric_stp3.keys():
metric_stp3[key] = metric_stp3[key].item()
logger.info(f'{key} is {metric_stp3[key]}')
#logger.info(f'metric_stp3 is {metric_stp3}')
logger.info(f'time_used is {time_used}')
logger.info(f'FPS is {1/time_used["per_frame"]}')
val_miou, _ = CalMeanIou_sem._after_epoch()
val_iou, _ = CalMeanIou_vox._after_epoch()
logger.info(f'PlanRegLoss is {plan_loss/len(val_dataset_loader)}')
del target_occs, input_occs
#best_val_iou = [max(best_val_iou[i], val_iou[i]) for i in range(len(best_val_iou))]
#best_val_miou = [max(best_val_miou[i], val_miou[i]) for i in range(len(best_val_miou))]
logger.info(f'Current val iou is {val_iou}')
logger.info(f'Current val miou is {val_miou}')
logger.info(f'avg val iou is {(val_iou[1]+val_iou[3]+val_iou[5])/3}')
logger.info(f'avg val miou is {(val_miou[1]+val_miou[3]+val_miou[5])/3}')
#logger.info(f'Current val iou is {val_iou} while the best val iou is {best_val_iou}')
#logger.info(f'Current val miou is {val_miou} while the best val miou is {best_val_miou}')
torch.cuda.empty_cache()
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('--py-config', default='config/tpv_lidarseg.py')
parser.add_argument('--work-dir', type=str, default='./out/tpv_lidarseg')
parser.add_argument('--resume-from', type=str, default='')
parser.add_argument('--iter-resume', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
ngpus = torch.cuda.device_count()
args.gpus = ngpus
print(args)
if ngpus > 1:
torch.multiprocessing.spawn(main, args=(args,), nprocs=args.gpus)
else:
main(0, args)