-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman_agent.py
358 lines (312 loc) · 14.4 KB
/
kalman_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# This agent is stationary (cannot move) but can change its angle to track and shoot at enemy tanks.
# It implements a Kalman Filter to track and predict the movements of other tanks
# And also creates plots (via either GNUPlot or OpenGL) of the probability distributions in order to visualize the efficacy of the Kalman Filter.
import sys
import math
import time
import numpy
from numpy import ones
import random
import OpenGL
OpenGL.ERROR_CHECKING = False
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
from numpy import zeros
from bzrc import BZRC, Command
class Agent(object):
"""Class handles all command and control logic for a teams tanks."""
def __init__(self, bzrc):
self.bzrc = bzrc
self.constants = self.bzrc.get_constants()
self.commands = []
self.mytankdata = []
mytanks = self.bzrc.get_mytanks()
for tank in mytanks:
self.mytankdata.append((0.0, 0.0)) # push initial speed_error and angle_error onto list for each tank
self.mu_t = numpy.zeros(6)
self.sigma_t = 100.0 * numpy.identity(6, float)
self.sigma_t[1][1] = 0.1
self.sigma_t[2][2] = 0.1
self.sigma_t[4][4] = 0.1
self.sigma_t[5][5] = 0.1
self.physics = numpy.identity(6, float)
accel_noise = .1
vel_noise = .01
pos_noise = 0
# TWEAK ME!
self.state_noise = 1 * numpy.identity(6, float)
self.state_noise[0][0] = pos_noise
self.state_noise[3][3] = pos_noise
self.state_noise[1][1] = vel_noise
self.state_noise[4][4] = vel_noise
self.state_noise[2][2] = accel_noise
self.state_noise[5][5] = accel_noise
self.observation_matrix = numpy.zeros((2, 6), float)
self.observation_matrix[0][0] = 1
self.observation_matrix[1][3] = 1
self.observation_noise_factor = 25
self.observation_noise = self.observation_noise_factor * numpy.identity(2, float)
self.worldsize = int(self.constants['worldsize'])
self.grid_color_normalizer = 1
self.last_time_diff = 0
self.print_mu = False
self.print_sigma = True
if self.print_sigma:
print "Sigma X Pos,Sigma Y Pos,Sigma X Vel,Sigma Y Vel,Sigma X Acc,Sigma Y Acc"
if self.print_mu:
print "Mu X Pos,Mu Y Pos,Mu X Vel,Mu Y Vel,Mu X Acc,Mu Y Acc,Obs X Pos,Obs Y Pos"
def tick(self, time_diff):
"""Some time has passed; decide what to do next."""
mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
self.mytanks = mytanks
self.othertanks = othertanks
self.flags = flags
self.shots = shots
self.enemies = [tank for tank in othertanks if tank.color !=
self.constants['team']]
self.commands = []
if self.enemies[0].status == 'alive':
dt = time_diff - self.last_time_diff
self.last_time_diff = time_diff
#print "TIME: ", dt * 1
# Adjust this model for different agents. And weather.
friction_k = .01
accel_factor = 0.05
accel_factor = 0.05
self.physics[0][1] = dt * 1
self.physics[0][2] = accel_factor * dt**2 / 2 # Accel x
self.physics[1][2] = dt # Change in vel x
self.physics[2][1] = -friction_k
self.physics[3][4] = dt * 1
self.physics[3][5] = accel_factor * dt**2 / 2 # Accel y
self.physics[4][5] = dt # Change in vel y
self.physics[5][4] = -friction_k
self.update_estimates()
self.update_estimate_plot()
# Move
mytanks = self.bzrc.get_mytanks()
tank = mytanks[0]
if tank.status == 'alive':
self.do_move(tank)
results = self.bzrc.do_commands(self.commands)
def update_estimates(self):
# Initialize equation variables
F = self.physics
Et = self.sigma_t
Ex = self.state_noise
H = self.observation_matrix
Ez = self.observation_noise
ut = self.mu_t
FT = F.transpose()
HT = H.transpose()
Fn = F.dot(Et.dot(FT)) + Ex
#Prediction
self.ut_pred = F.dot(ut)
# Kalman update equations
second_term_inverse = numpy.linalg.inv(H.dot(Fn.dot(HT)) + Ez)
kalman_gain = Fn.dot(HT.dot(second_term_inverse))
self.zt = (self.enemies[0].x, self.enemies[0].y)
self.mu_t = F.dot(ut) + kalman_gain.dot(self.zt -H.dot(F.dot(ut)))
self.sigma_t = (numpy.identity(6, float) - kalman_gain.dot(H)).dot(Fn)
sigma_t = self.sigma_t
if self.print_sigma:
print sigma_t[0][0], ", ", sigma_t[3][3], ", ", sigma_t[1][1], ", ", sigma_t[4][4], ", ", sigma_t[2][2], ", ", sigma_t[5][5]
if self.print_mu:
print self.mu_t[0], ", ", self.mu_t[3], ", ", self.mu_t[1], ", ", self.mu_t[4], ", ", self.mu_t[2], ", ", self.mu_t[5], ",", self.zt[0], ",", self.zt[1]
#for item in self.mu_t:
# print item
#print "..."
#print self.ut_pred[0], ",", self.ut_pred[1], ",", self.ut_pred[2], ",", self.ut_pred[3], ",", self.ut_pred[4], ",", self.ut_pred[5], ",", self.zt[0], ",",self.zt[1]
#print self.sigma_t[0][0], ",", self.sigma_t[3][3]
#print self.mu_t[0], ", ", self.mu_t[3]
# Debug statements
'''
print "mu_t:\n"
for item in self.mu_t:
print item
print "observation:\n"
print self.zt[0], self.zt[1]
print "sigma:\n"
for item in self.sigma_t:
print item
'''
def update_estimate_plot(self):
# sigma x, y, and rho are used to plot the PDF
self.sigma_x = self.sigma_t[0][0]
self.sigma_y = self.sigma_t[3][3]
self.rho = self.sigma_t[0][3] / (math.sqrt(self.sigma_x) * math.sqrt(self.sigma_y))
#print self.sigma_x, ",", self.sigma_y, ",", self.rho
# Create a mini 2D sigma matrix and a 1D mu vector for plotting the distribution
pos_mu = (self.ut_pred[0] + self.worldsize/2, self.ut_pred[3] + self.worldsize/2)
pos_sigma = ((self.sigma_t[0][0], self.sigma_t[0][3]),(self.sigma_t[3][0], self.sigma_t[3][3]))
E_inv = numpy.linalg.inv(pos_sigma)
rank = 2
coefficient = (1.0 / math.sqrt(numpy.linalg.det(pos_sigma) * (2.0 * math.pi)**rank))
# Clear display grid
for x in range(0, self.worldsize - 1):
for y in range(0, self.worldsize - 1):
grid[x][y] = 0
step = 1
extent = 2
maxvalue = 0
for x in range(int(self.ut_pred[0] - extent * self.sigma_t[0][0] + self.worldsize/2), int(self.ut_pred[0] + extent * self.sigma_t[0][0] + self.worldsize/2), step):
if x < 0 or x >= self.worldsize:
continue
for y in range(int(self.ut_pred[3] - extent * self.sigma_t[3][3] + self.worldsize/2), int(self.ut_pred[3] + extent * self.sigma_t[3][3] + self.worldsize/2), step):
if y < 0 or y >= self.worldsize:
continue
gx = x #/ step
gy = y #/ step
'''
x_center = x - self.mu_t[0] - self.worldsize/2
y_center = y - self.mu_t[3] - self.worldsize/2
small1 = 1.0/(2.0 * math.pi * self.sigma_x * self.sigma_y * math.sqrt(1 - self.rho **2))
small2 = math.exp(-1.0/2.0 * (x_center**2 / self.sigma_x**2 + y_center**2 / self.sigma_y**2 \
-2.0*self.rho*x_center*y_center/(self.sigma_x*self.sigma_y)))
# Plot the Gaussian distribution
grid[gy][gx] = 1.0/(2.0 * math.pi * self.sigma_x * self.sigma_y * math.sqrt(1 - self.rho **2)) \
* math.exp(-1.0/2.0 * (x_center**2 / self.sigma_x**2 + y_center**2 / self.sigma_y**2 \
-2.0*self.rho*x_center*y_center/(self.sigma_x*self.sigma_y)))
'''
# Plotting Try 2: See if we can dispense with the Rho
plot_x = (gx, gy)
plot_vector = numpy.subtract(plot_x, pos_mu)
#print "plot vector ", plot_vector, "\n"
exponent = (-1.0/2.0) * (plot_vector.transpose().dot(E_inv.dot(plot_vector)))
#print coefficient, " c\n"
#print exponent, " e\n"
grid[gy][gx] = coefficient * math.exp(exponent)
#print grid[gy][gx], " g\n"
# Set the normalizing constant
if grid[gy][gx] > maxvalue:
maxvalue = grid[gy][gx]
# DEBUG
if grid[gy][gx] > 1:
print grid[gy][gx]
# Apply normalizing constant
for x in range(int(self.ut_pred[0] - extent * self.sigma_t[0][0] + self.worldsize/2), int(self.ut_pred[0] + extent * self.sigma_t[0][0] + self.worldsize/2), step):
if x < 0 or x >= self.worldsize:
continue
for y in range(int(self.ut_pred[3] - extent * self.sigma_t[3][3] + self.worldsize/2), int(self.ut_pred[3] + extent * self.sigma_t[3][3] + self.worldsize/2), step):
if y < 0 or y >= self.worldsize:
continue
gx = x #/ step
gy = y #/ step
grid[gy][gx] = (grid[gy][gx] / maxvalue) + 0
# Gridline drawing code: Uncomment to see gridlines drawn
'''
if x % 100 == 0:
grid[x][y] = (1 - float (abs((x - self.worldsize / 2))) / float(self.worldsize / 2))**2
if y % 100 == 0:
grid[x][y] = (1 - float (abs((y - self.worldsize / 2))) / float(self.worldsize / 2))**2
if y % 100 == 0 and x % 100 == 0:
grid[x][y] = 1
if x == self.worldsize / 2 and y == self.worldsize / 2:
grid[x][y] = 0
'''
# Put a white dot at the observation site
if self.zt[1] > -self.worldsize/2+2 and self.zt[1] < self.worldsize/2-2:
if self.zt[0] > -self.worldsize/2+2 and self.zt[0] < self.worldsize/2-2:
grid[int(self.zt[1]-1) + self.worldsize/2][int(self.zt[0]) + self.worldsize/2] = 1
grid[int(self.zt[1]) + self.worldsize/2][int(self.zt[0]-1) + self.worldsize/2] = 1
grid[int(self.zt[1]+1) + self.worldsize/2][int(self.zt[0]) + self.worldsize/2] = 1
grid[int(self.zt[1]) + self.worldsize/2][int(self.zt[0]+1) + self.worldsize/2] = 1
# Put a little white dot at the prediction site
if self.ut_pred[3] > -self.worldsize/2+1 and self.ut_pred[3] < self.worldsize/2-1:
if self.ut_pred[0] > -self.worldsize/2+1 and self.ut_pred[0] < self.worldsize/2-1:
grid[int(self.ut_pred[3]) + self.worldsize/2][int(self.ut_pred[0]) + self.worldsize/2] = 0
#grid[gy][gx] = (grid[gy][gx] / maxvalue) + 0
#grid[int(self.mu_t[1]) + self.worldsize / 2][int(self.mu_t[0]) + self.worldsize / 2] = 0
def do_move(self, tank):
"""Compute and follow the potential field vector"""
#print(self.get_potential_field_vector(tank))
#v, theta = self.get_potential_field_vector(tank)
# Predict the enemy tank's move
# Iteratively converge on the approximate intersection of the shot with the enemy tank
F = self.physics
shoot_pred = F.dot(self.mu_t)
for i in range(0,10):
# Adjust this model for different agents. And weather.
dt = math.sqrt((tank.x - shoot_pred[0])**2 + (tank.y - shoot_pred[3])**2) / 80.0
#print "Time: ", dt
friction_k = 0.1
F[0][1] = dt * 1
#F[0][2] = dt**2 / 2 # Accel x
F[1][2] = dt # Change in vel x
F[2][1] = -friction_k
F[3][4] = dt * 1
#F[3][5] = dt**2 / 2 # Accel y
F[4][5] = dt # Change in vel y
F[5][4] = -friction_k
shoot_pred = F.dot(self.mu_t)
target_x = shoot_pred[0]
target_y = shoot_pred[3]
self.move_to_position(tank, target_x, target_y)
#self.commands.append(self.pd_controller_move(tank, v, theta))
def move_to_position(self, tank, target_x, target_y):
"""Set command to move to given coordinates."""
target_angle = math.atan2(target_y - tank.y,
target_x - tank.x)
relative_angle = self.normalize_angle(target_angle - tank.angle)
#print "Moving turret to ", relative_angle
command = Command(tank.index, 0, 2 * relative_angle, True)
self.commands.append(command)
def normalize_angle(self, angle):
"""Make any angle be between +/- pi."""
angle -= 2 * math.pi * int (angle / (2 * math.pi))
if angle <= -math.pi:
angle += 2 * math.pi
elif angle > math.pi:
angle -= 2 * math.pi
return angle
def draw_grid(self):
# This assumes you are using a numpy array for your grid
width, height = grid.shape
glRasterPos2f(-1, -1)
glDrawPixels(width, height, GL_LUMINANCE, GL_FLOAT, grid)
glFlush()
glutSwapBuffers()
glutPostRedisplay()
def update_grid(self, new_grid):
global grid
grid = new_grid
def init_window(self, width, height):
global window
global grid
grid = zeros((width, height))
glutInit(())
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
glutInitWindowSize(width, height)
glutInitWindowPosition(0, 0)
window = glutCreateWindow("Grid filter")
glutDisplayFunc(self.draw_grid)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
def main():
# Process CLI arguments.
try:
execname, host, port = sys.argv
except ValueError:
execname = sys.argv[0]
print >>sys.stderr, '%s: incorrect number of arguments' % execname
print >>sys.stderr, 'usage: %s hostname port' % sys.argv[0]
sys.exit(-1)
# Connect.
bzrc = BZRC(host, int(port))
agent = Agent(bzrc)
prev_time = time.time()
agent.init_window(int(800),int(800))
# Run the agent
try:
while True:
time_diff = time.time() - prev_time
agent.tick(time_diff)
glutMainLoopEvent()
except KeyboardInterrupt:
print "Exiting due to keyboard interrupt."
bzrc.close()
if __name__ == '__main__':
main()