Here're some resources about Vanilla GANs
paper link: here
citation:
@article{goodfellow2016nips,
title={Nips 2016 tutorial: Generative adversarial networks},
author={Goodfellow, Ian},
journal={arXiv preprint arXiv:1701.00160},
year={2016}
}
paper link: here
citation:
@inproceedings{zhu2016generative,
title={Generative visual manipulation on the natural image manifold},
author={Zhu, Jun-Yan and Kr{\"a}henb{\"u}hl, Philipp and Shechtman, Eli and Efros, Alexei A},
booktitle={Computer Vision--ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part V 14},
pages={597--613},
year={2016},
organization={Springer}
}
here's a notebook about generating human faces on CelebA dataset using DCGAN
: here
paper link: here
citation:
@article{radford2015unsupervised,
title={Unsupervised representation learning with deep convolutional generative adversarial networks},
author={Radford, Alec and Metz, Luke and Chintala, Soumith},
journal={arXiv preprint arXiv:1511.06434},
year={2015}
}
paper link: here
citation:
@article{goodfellow2014generative,
title={Generative adversarial nets},
author={Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
journal={Advances in neural information processing systems},
volume={27},
year={2014}
}
here's a notebook about generating camel drawing on QuickDraw dataset using vanilla GAN
: here