-
Notifications
You must be signed in to change notification settings - Fork 92
/
tsdf.py
350 lines (293 loc) · 15.2 KB
/
tsdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import glob
import logging
import os
import sys
import time
import cv2
import numpy as np
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import utils
from internal import coord
from internal import checkpoints
from internal import configs
import torch
import accelerate
from tqdm import tqdm
from torch.utils._pytree import tree_map
import torch.nn.functional as F
from skimage import measure
import trimesh
import pymeshlab as pml
from torch import Tensor
configs.define_common_flags()
class TSDF:
def __init__(self, config: configs.Config, accelerator: accelerate.Accelerator):
self.config = config
self.device = accelerator.device
self.accelerator = accelerator
self.origin = torch.tensor([-config.tsdf_radius] * 3, dtype=torch.float32, device=self.device)
self.voxel_size = 2 * config.tsdf_radius / (config.tsdf_resolution - 1)
self.resolution = config.tsdf_resolution
# create the voxel coordinates
dim = torch.arange(self.resolution)
grid = torch.stack(torch.meshgrid(dim, dim, dim, indexing="ij"), dim=0).reshape(3, -1)
period = int(grid.shape[1] / accelerator.num_processes + 0.5)
grid = grid[:, period * accelerator.process_index: period * (accelerator.process_index + 1)]
self.voxel_coords = self.origin.view(3, 1) + grid.to(self.device) * self.voxel_size
N = self.voxel_coords.shape[1]
# make voxel_coords homogeneous
voxel_world_coords = coord.inv_contract(self.voxel_coords.permute(1, 0)).permute(1, 0).view(3, -1)
# voxel_world_coords = self.voxel_coords.view(3, -1)
voxel_world_coords = torch.cat(
[voxel_world_coords, torch.ones(1, voxel_world_coords.shape[1], device=self.device)], dim=0
)
voxel_world_coords = voxel_world_coords.unsqueeze(0) # [1, 4, N]
self.voxel_world_coords = voxel_world_coords.expand(-1, *voxel_world_coords.shape[1:]) # [1, 4, N]
# initialize the values and weights
self.values = torch.ones(N, dtype=torch.float32,
device=self.device)
self.weights = torch.zeros(N, dtype=torch.float32,
device=self.device)
self.colors = torch.zeros(N, 3, dtype=torch.float32,
device=self.device)
@property
def truncation(self):
"""Returns the truncation distance."""
# TODO: clean this up
truncation = self.voxel_size * self.config.truncation_margin
return truncation
def export_mesh(self, path):
"""Extracts a mesh using marching cubes."""
# run marching cubes on CPU
tsdf_values = self.values.clamp(-1, 1)
mask = self.voxel_world_coords[:, :3].permute(0, 2, 1).norm(p=2, dim=-1) > self.config.tsdf_max_radius
tsdf_values[mask.reshape(self.values.shape)] = 1.
tsdf_values_np = self.accelerator.gather(tsdf_values).cpu().reshape((self.resolution, self.resolution, self.resolution)).numpy()
color_values_np = self.accelerator.gather(self.colors).cpu().reshape((self.resolution, self.resolution, self.resolution, 3)).numpy()
# # for OOM(resolution > 512)
# tsdf_values_np = tsdf_values.cpu().numpy()
# color_values_np = self.colors.cpu().numpy()
# path_dir = os.path.dirname(path)
# np.save(os.path.join(path_dir, 'tsdf_values_tmp_{}.npy'.format(self.accelerator.process_index)), tsdf_values_np)
# np.save(os.path.join(path_dir, 'color_values_tmp_{}.npy'.format(self.accelerator.process_index)), color_values_np)
# self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
# print('Start marching cubes')
# tsdf_values_np = np.concatenate([np.load(os.path.join(path_dir, 'tsdf_values_tmp_{}.npy'.format(i)), allow_pickle=True) for i in
# range(self.accelerator.num_processes)]).reshape((self.resolution, self.resolution, self.resolution))
# color_values_np = np.concatenate([np.load(os.path.join(path_dir, 'color_values_tmp_{}.npy'.format(i)), allow_pickle=True) for i in
# range(self.accelerator.num_processes)]).reshape((self.resolution, self.resolution, self.resolution, 3))
# print('After concatenate')
# os.system('rm {}'.format(os.path.join(path_dir, 'tsdf_values_tmp_*.npy')))
# os.system('rm {}'.format(os.path.join(path_dir, 'color_values_tmp_*.npy')))
vertices, faces, normals, _ = measure.marching_cubes(
tsdf_values_np,
level=0,
allow_degenerate=False,
)
vertices_indices = np.round(vertices).astype(int)
colors = color_values_np[vertices_indices[:, 0], vertices_indices[:, 1], vertices_indices[:, 2]]
# move vertices back to world space
vertices = self.origin.cpu().numpy() + vertices * self.voxel_size
vertices = coord.inv_contract_np(vertices)
trimesh.Trimesh(vertices=vertices,
faces=faces,
normals=normals,
vertex_colors=colors,
).export(path)
@torch.no_grad()
def integrate_tsdf(
self,
c2w,
K,
depth_images,
color_images=None,
):
"""Integrates a batch of depth images into the TSDF.
Args:
c2w: The camera extrinsics.
K: The camera intrinsics.
depth_images: The depth images to integrate.
color_images: The color images to integrate.
"""
batch_size = c2w.shape[0]
shape = self.voxel_coords.shape[1:]
# Project voxel_coords into image space...
image_size = torch.tensor(
[depth_images.shape[-1], depth_images.shape[-2]], device=self.device
) # [width, height]
# make voxel_coords homogeneous
voxel_world_coords = self.voxel_world_coords.expand(batch_size,
*self.voxel_world_coords.shape[1:]) # [batch, 4, N]
voxel_cam_coords = torch.bmm(torch.inverse(c2w), voxel_world_coords) # [batch, 4, N]
# flip the z axis
voxel_cam_coords[:, 2, :] = -voxel_cam_coords[:, 2, :]
# flip the y axis
voxel_cam_coords[:, 1, :] = -voxel_cam_coords[:, 1, :]
# # we need the distance of the point to the camera, not the z coordinate
# # TODO: why is this not the z coordinate?
# voxel_depth = torch.sqrt(torch.sum(voxel_cam_coords[:, :3, :] ** 2, dim=-2, keepdim=True)) # [batch, 1, N]
voxel_cam_coords_z = voxel_cam_coords[:, 2:3, :]
voxel_depth = voxel_cam_coords_z
voxel_cam_points = torch.bmm(K[None].expand(batch_size, -1, -1),
voxel_cam_coords[:, 0:3, :] / voxel_cam_coords_z) # [batch, 3, N]
voxel_pixel_coords = voxel_cam_points[:, :2, :] # [batch, 2, N]
# Sample the depth images with grid sample...
grid = voxel_pixel_coords.permute(0, 2, 1) # [batch, N, 2]
# normalize grid to [-1, 1]
grid = 2.0 * grid / image_size.view(1, 1, 2) - 1.0 # [batch, N, 2]
grid = grid[:, None] # [batch, 1, N, 2]
# depth
sampled_depth = F.grid_sample(
input=depth_images, grid=grid, mode="nearest", padding_mode="zeros", align_corners=False
) # [batch, N, 1]
sampled_depth = sampled_depth.squeeze(2) # [batch, 1, N]
# colors
sampled_colors = None
if color_images is not None:
sampled_colors = F.grid_sample(
input=color_images, grid=grid, mode="nearest", padding_mode="zeros", align_corners=False
) # [batch, N, 3]
sampled_colors = sampled_colors.squeeze(2) # [batch, 3, N]
dist = sampled_depth - voxel_depth # [batch, 1, N]
# x = self.voxel_world_coords[:, :3].permute(0, 2, 1)
# eps = torch.finfo(x.dtype).eps
# x_mag_sq = torch.sum(x ** 2, dim=-1).clamp_min(eps)
# truncation_weight = torch.where(x_mag_sq <= 1, torch.ones_like(x_mag_sq),
# ((2 * torch.sqrt(x_mag_sq) - 1) / x_mag_sq))
# truncation = truncation_weight.reciprocal() * self.truncation
truncation = self.truncation
tsdf_values = torch.clamp(dist / truncation, min=-1.0, max=1.0) # [batch, 1, N]
valid_points = (voxel_depth > 0) & (sampled_depth > 0) & (dist > -self.truncation) # [batch, 1, N]
# Sequentially update the TSDF...
for i in range(batch_size):
valid_points_i = valid_points[i]
valid_points_i_shape = valid_points_i.view(*shape) # [xdim, ydim, zdim]
# the old values
old_tsdf_values_i = self.values[valid_points_i_shape]
old_weights_i = self.weights[valid_points_i_shape]
# the new values
# TODO: let the new weight be configurable
new_tsdf_values_i = tsdf_values[i][valid_points_i]
new_weights_i = 1.0
total_weights = old_weights_i + new_weights_i
self.values[valid_points_i_shape] = (old_tsdf_values_i * old_weights_i +
new_tsdf_values_i * new_weights_i) / total_weights
# self.weights[valid_points_i_shape] = torch.clamp(total_weights, max=1.0)
self.weights[valid_points_i_shape] = total_weights
if sampled_colors is not None:
old_colors_i = self.colors[valid_points_i_shape] # [M, 3]
new_colors_i = sampled_colors[i][:, valid_points_i.squeeze(0)].permute(1, 0) # [M, 3]
self.colors[valid_points_i_shape] = (old_colors_i * old_weights_i[:, None] +
new_colors_i * new_weights_i) / total_weights[:, None]
def main(unused_argv):
config = configs.load_config()
config.compute_visibility = True
config.exp_path = os.path.join("exp", config.exp_name)
config.mesh_path = os.path.join("exp", config.exp_name, "mesh")
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
os.makedirs(config.mesh_path, exist_ok=True)
# accelerator for DDP
accelerator = accelerate.Accelerator()
device = accelerator.device
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_extract.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
# setup model and optimizer
model = models.Model(config=config)
model = accelerator.prepare(model)
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
model.eval()
module = accelerator.unwrap_model(model)
dataset = datasets.load_dataset('train', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
shuffle=False,
batch_size=1,
collate_fn=dataset.collate_fn,
)
dataiter = iter(dataloader)
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
out_name = f'train_preds_step_{step}'
out_dir = os.path.join(config.mesh_path, out_name)
utils.makedirs(out_dir)
logger.info("Render trainset in {}".format(out_dir))
path_fn = lambda x: os.path.join(out_dir, x)
# Ensure sufficient zero-padding of image indices in output filenames.
zpad = max(3, len(str(dataset.size - 1)))
idx_to_str = lambda idx: str(idx).zfill(zpad)
for idx in range(dataset.size):
# If current image and next image both already exist, skip ahead.
idx_str = idx_to_str(idx)
curr_file = path_fn(f'color_{idx_str}.png')
if utils.file_exists(curr_file):
logger.info(f'Image {idx + 1}/{dataset.size} already exists, skipping')
continue
batch = next(dataiter)
batch = tree_map(lambda x: x.to(accelerator.device) if x is not None else None, batch)
logger.info(f'Evaluating image {idx + 1}/{dataset.size}')
eval_start_time = time.time()
rendering = models.render_image(model, accelerator,
batch, False, 1, config)
logger.info(f'Rendered in {(time.time() - eval_start_time):0.3f}s')
if accelerator.is_main_process: # Only record via host 0.
rendering['rgb'] = postprocess_fn(rendering['rgb'])
rendering = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, rendering)
utils.save_img_u8(rendering['rgb'], path_fn(f'color_{idx_str}.png'))
utils.save_img_f32(rendering['distance_mean'],
path_fn(f'distance_mean_{idx_str}.tiff'))
utils.save_img_f32(rendering['distance_median'],
path_fn(f'distance_median_{idx_str}.tiff'))
# if accelerator.is_main_process:
tsdf = TSDF(config, accelerator)
c2w = torch.from_numpy(dataset.camtoworlds[:, :3, :4]).float().to(device)
# make c2w homogeneous
c2w = torch.cat([c2w, torch.zeros(c2w.shape[0], 1, 4, device=device)], dim=1)
c2w[:, 3, 3] = 1
K = torch.from_numpy(dataset.pixtocams).float().to(device).inverse()
logger.info('Reading images')
rgb_files = sorted(glob.glob(path_fn('color_*.png')))
depth_files = sorted(glob.glob(path_fn('distance_median_*.tiff')))
assert len(rgb_files) == len(depth_files)
color_images = []
depth_images = []
for rgb_file, depth_file in zip(tqdm(rgb_files, disable=not accelerator.is_main_process), depth_files):
color_images.append(utils.load_img(rgb_file) / 255)
depth_images.append(utils.load_img(depth_file)[..., None])
color_images = torch.tensor(np.array(color_images), device=device).permute(0, 3, 1, 2) # shape (N, 3, H, W)
depth_images = torch.tensor(np.array(depth_images), device=device).permute(0, 3, 1, 2) # shape (N, 1, H, W)
batch_size = 1
logger.info("Integrating the TSDF")
for i in tqdm(range(0, len(c2w), batch_size), disable=not accelerator.is_main_process):
tsdf.integrate_tsdf(
c2w[i: i + batch_size],
K,
depth_images[i: i + batch_size],
color_images=color_images[i: i + batch_size],
)
logger.info("Saving TSDF Mesh")
tsdf.export_mesh(os.path.join(config.mesh_path, "tsdf_mesh.ply"))
accelerator.wait_for_everyone()
logger.info('Finish extracting mesh using TSDF.')
if __name__ == '__main__':
with gin.config_scope('bake'):
app.run(main)