Machine Learning Lecture
Octave Tutorial
CS188 AI
- Search
- Inferrence
- 12 Probability
- 16 BNs Representation
- 17 BNs Independence
- 18 BNs Inference
- 19 BNs Sampleing
- 20 Decision Diagram
- 13 Markov Models
- 14 HMM
- 14.5 Particle Filtering
- 15 Application of HMM
- Machine Learning
- 20 MK: Naive Bayes
- 21 Perceptrons and Logistic Regression
- 22 Optimiaztion and Neural Nets
- 23 DecisionTrees
- 24 Application
TensorFlow2
Others
- OpenAI GYM
- RL David Silver 随笔
- RL David Silver 随笔
- Neural Network Coursera
- DeepLearning MIT 6S191
- MAXQ-Q
- RL,art of state
- 台大 机器学习基石
- how alphazero works
- 梯度下降推导
- Inferring DQN structure
Old article