-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_cvusa.py
157 lines (120 loc) · 5.91 KB
/
eval_cvusa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import torch
from dataclasses import dataclass
from torch.utils.data import DataLoader
from auxgeo.dataset.cvusa import CVUSADatasetEval
from auxgeo.transforms import get_transforms_val
from auxgeo.evaluate.cvusa_and_cvact import evaluate
from auxgeo.model import TimmModel
import time
import shutil
@dataclass
class Configuration:
# Model
model: str = 'convnext_base.fb_in22k_ft_in1k_384'
# Override model image size
img_size: int = 384
# Evaluation
batch_size: int = 128
verbose: bool = True
gpu_ids: tuple = (0,)
normalize_features: bool = True
# Dataset
data_folder = "./data/CVUSA"
# Checkpoint to start from
checkpoint_start = 'pretrained/cvusa/convnext_base.fb_in22k_ft_in1k_384/weights.pth'
# Savepath for model checkpoints
model_path: str = "./checkpoints/cvusa"
# set num_workers to 0 if on Windows
num_workers: int = 0 if os.name == 'nt' else 12
# train on GPU if available
device: str = 'cuda' if torch.cuda.is_available() else 'cpu'
# -----------------------------------------------------------------------------#
# Config #
# -----------------------------------------------------------------------------#
config = Configuration()
if __name__ == '__main__':
import warnings
warnings.filterwarnings('ignore')
model_path = "{}/{}/{}".format(config.model_path,
config.model,
time.strftime("%m%d%H%M%S"))
if not os.path.exists(model_path):
os.makedirs(model_path)
shutil.copyfile(os.path.basename(__file__), "{}/train.py".format(model_path))
shutil.copyfile("./auxgeo/trainer.py", "{}/trainer.py".format(model_path))
# -----------------------------------------------------------------------------#
# Model #
# -----------------------------------------------------------------------------#
print("\nModel: {ConvNeXt-base Modified Version.}\n")
from auxgeo.model_modified import make_model
model = make_model(config)
data_config = model.get_config()
print(data_config)
mean = data_config["mean"]
std = data_config["std"]
img_size = config.img_size
image_size_sat = (img_size, img_size)
new_width = config.img_size * 2
new_hight = round((224 / 1232) * new_width)
img_size_ground = (new_hight, new_width)
# load pretrained Checkpoint
if config.checkpoint_start is not None:
print("Start from:", config.checkpoint_start)
model_state_dict = torch.load(config.checkpoint_start)
model.load_state_dict(model_state_dict, strict=False)
# Data parallel
print("GPUs available:", torch.cuda.device_count())
if torch.cuda.device_count() > 1 and len(config.gpu_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=config.gpu_ids)
# Model to device
model = model.to(config.device)
print("\nImage Size Sat:", image_size_sat)
print("Image Size Ground:", img_size_ground)
print("Mean: {}".format(mean))
print("Std: {}\n".format(std))
# -----------------------------------------------------------------------------#
# DataLoader #
# -----------------------------------------------------------------------------#
# Eval
sat_transforms_val, ground_transforms_val = get_transforms_val(image_size_sat,
img_size_ground,
mean=mean,
std=std,
)
# Reference Satellite Images
reference_dataset_test = CVUSADatasetEval(data_folder=config.data_folder,
split="test",
img_type="reference",
transforms=sat_transforms_val,
)
reference_dataloader_test = DataLoader(reference_dataset_test,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=False,
pin_memory=True)
# Query Ground Images Test
query_dataset_test = CVUSADatasetEval(data_folder=config.data_folder,
split="test",
img_type="query",
transforms=ground_transforms_val,
)
query_dataloader_test = DataLoader(query_dataset_test,
batch_size=config.batch_size,
num_workers=config.num_workers,
shuffle=False,
pin_memory=True)
print("Reference Images Test:", len(reference_dataset_test))
print("Query Images Test:", len(query_dataset_test))
# -----------------------------------------------------------------------------#
# Evaluate #
# -----------------------------------------------------------------------------#
print("\n{}[{}]{}".format(30 * "-", "CVUSA", 30 * "-"))
r1_test = evaluate(config=config,
model=model,
model_path=model_path,
reference_dataloader=reference_dataloader_test,
query_dataloader=query_dataloader_test,
ranks=[1, 5, 10],
step_size=1000,
cleanup=True)