We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[@toc]
因为打开 1 个页面至少需要 1 个网络进程、1 个浏览器进程、1 个 GPU 进程以及 1 个渲染进程,共 4 个;如果打开的页面有运行插件的话,还需要再加上 1 个插件进程。
通常情况下会是四个,但是有很多其他情况:
1:如果页面里有iframe的话,iframe也会运行在单独的进程中!
2:如果页面里有插件,同样插件也需要开启一个单独的进程!
3:如果你装了扩展的话,扩展也会占用进程
4:如果2个页面属于同一站点的话,并且从a页面中打开的b页面,那么他们会公用一个渲染进程
下面我们来逐个分析下这几个进程的功能。
「浏览器进程」。主要负责界面显示、用户交互、子进程管理,同时提供存储等功能。
「渲染进程」。核心任务是将 HTML、CSS 和 JavaScript 转换为用户可以与之交互的网页,排版引擎 Blink 和 JavaScript 引擎 V8 都是运行在该进程中,默认情况下,Chrome 会为每个 Tab 标签创建一个渲染进程。出于安全考虑,渲染进程都是运行在沙箱模式下。
「GPU 进程」。其实,Chrome 刚开始发布的时候是没有 GPU 进程的。而 GPU 的使用初衷是为了实现 3D CSS 的效果,只是随后网页、Chrome 的 UI 界面都选择采用 GPU 来绘制,这使得 GPU 成为浏览器普遍的需求。最后,Chrome 在其多进程架构上也引入了 GPU 进程。
「网络进程」。主要负责页面的网络资源加载,之前是作为一个模块运行在浏览器进程里面的,直至最近才独立出来,成为一个单独的进程。
「插件进程」。主要是负责插件的运行,因插件易崩溃,所以需要通过插件进程来隔离,以保证插件进程崩溃不会对浏览器和页面造成影响
接收到http响应头中的「content-type」类型时就开始准备渲染进程了,
响应体数据一旦接受到便开始做DOM解析了!
基于http不用担心数据包丢失的问题,因为丢包和重传都是在tcp层解决的。http能保证数据按照顺序接收的!
「用户输入URL按下回车键」,浏览器会根据用户输入的信息判断是搜索还是网址,如果是搜索内容,就将搜索内容+默认搜索引擎合成新的URL;如果用户输入的内容符合URL规则,浏览器就会根据URL协议,在这段内容上加上协议合成合法的URL,在继续这个过程前会执行「beforeunload」事件,浏览器导航栏显示loading状态,但是页面还是呈现前一个页面,这是因为要等渲染进程向浏览器进程「确认提交」,浏览器才会更新页面。
浏览器进程构建请求行信息,会通过进程间通信(IPC)将URL请求发送给网络进程
网络进程获取到URL,先去本地缓存中查找是否有缓存文件,如果有,拦截请求,直接200返回;否则,进入网络请求过程
网络进程请求DNS返回域名对应的IP和端口号,如果之前DNS数据缓存服务缓存过当前域名信息,就会直接返回缓存信息;否则,发起请求获取根据域名解析出来的IP和端口号(cdn解析下面单独讲),如果没有端口号,http默认80,https默认443。如果是https请求,还需要建立TLS连接。
Chrome 有个机制,同一个域名同时最多只能建立 6 个TCP 连接,如果在同一个域名下同时有 10 个请求发生,那么其中 4 个请求会进入排队等待状态,直至进行中的请求完成。如果当前请求数量少于6个,会直接建立TCP连接。
TCP三次握手建立连接,http请求加上TCP头部——包括源端口号、目的程序端口号和用于校验数据完整性的序号,向下传输(tcp三次握手,四次挥手细节下面单独讲)
网络层在数据包上加上IP头部——包括源IP地址和目的IP地址,继续向下传输到底层
底层通过物理网络传输给目的服务器主机
目的服务器主机网络层接收到数据包,解析出IP头部,识别出数据部分,将解开的数据包向上传输到传输层
目的服务器主机传输层获取到数据包,解析出TCP头部,识别端口,将解开的数据包向上传输到应用层
应用层HTTP解析请求头和请求体,如果需要重定向,HTTP直接返回HTTP响应数据的状态code301或者302,同时在请求头的Location字段中附上重定向地址,浏览器会根据code和Location进行重定向操作;如果不是重定向,首先服务器会根据 请求头中的If-None-Match 的值来判断请求的资源是否被更新,如果没有更新,就返回304状态码,相当于告诉浏览器之前的缓存还可以使用,就不返回新数据了;否则,返回新数据,200的状态码,并且如果想要浏览器缓存数据的话,就在相应头中加入字段:Cache-Control:Max-age=2000响应数据又顺着应用层——传输层——网络层——网络层——传输层——应用层的顺序返回到网络进程
数据传输完成,TCP四次挥手断开连接。如果,浏览器或者服务器在HTTP头部加上如下信息,TCP就一直保持连接。保持TCP连接可以省下下次需要建立连接的时间,提示资源加载速度Connection:Keep-Alive
网络进程将获取到的数据包进行解析,根据响应头中的Content-type来判断响应数据的类型,如果是字节流类型(其 Content-Type 的值是 application/octet-stream),就将该请求交给下载管理器,该导航流程结束,不再进行;如果是text/html类型,就把解析出来的响应头数据发送给通知浏览器进程获取到文档准备渲染(「到这里你应该明白第二问是为什么是在接收到content-type的时候开始准备渲染进程的了吧」),
浏览器进程获取到通知,根据当前页面B是否是从页面A打开的并且和页面A是否是同一个站点(根域名和协议一样就被认为是同一个站点),如果满足上述条件,就复用之前网页的进程,否则,新创建一个单独的渲染进程
浏览器会发出“提交导航(CommitNavigation时携带响应头等基本信息)”的消息给渲染进程,渲染进程收到消息后,会和网络进程建立传输数据的“管道”,文档数据传输完成后,渲染进程会返回“确认提交”的消息给浏览器进程
浏览器收到“确认提交”的消息后,会更新浏览器的页面状态,包括了安全状态、地址栏的 URL、前进后退的历史状态,并更新web页面,此时的web页面是空白页
「构建 DOM 树」:这是因为浏览器无法直接理解和使用 HTML,所以需要将 HTML 转换为浏览器能够理解的结构——DOM 树
「样式计算」
CSS 样式来源主要有三种: 通过 link 引用的外部 CSS 文件 <style>标记内的 CSS元素的 style 属性内嵌的 CSS和 HTML 文件一样,浏览器也是无法直接理解这些纯文本的 CSS 样式,所以当渲染引擎接收到 CSS 文本时,会执行一个转换操作,将 CSS 文本转换为浏览器可以理解的结构——styleSheets。
CSS 样式来源主要有三种:
<style>
在计算过程中需要遵守 CSS 的继承和层叠两个规则。这个阶段最终输出的内容是每个 DOM 节点的样式,并被保存在 ComputedStyle 的结构内
「生成render树」
你可能注意到了 DOM 树还含有很多不可见的元素,比如 head 标签,还有使用了 display:none 属性的元素。所以在显示之前,我们还要额外地构建一棵只包含可见元素布局树
「布局计算」
现在我们有了一棵完整的布局树。那么接下来,就要计算布局树节点的坐标位置了
「分层」
因为页面中有很多复杂的效果,如一些复杂的 3D 变换、页面滚动,或者使用 z-indexing 做 z 轴排序等,为了更加方便地实现这些效果,渲染引擎还需要为特定的节点生成专用的图层,并生成一棵对应的图层树(LayerTree)
通常满足下面两点中任意一点的元素就可以被提升为单独的一个图层
「图层绘制」在完成图层树的构建之后,渲染引擎会对图层树中的每个图层进行绘制,渲染引擎会把一个图层的绘制拆分成很多小的绘制指令,然后再把这些指令按照顺序组成一个待绘制列表
「栅格化(raster)操作」绘制列表只是用来记录绘制顺序和绘制指令的列表,而实际上绘制操作是由渲染引擎中的合成线程来完成的。你可以结合下图来看下渲染主线程和合成线程之间的关系:
如上图所示,当图层的绘制列表准备好之后,主线程会把该绘制列表提交(commit)给合成线程,那么接下来合成线程是怎么工作的呢?
合成线程会将图层划分为图块(tile),这些图块的大小通常是 256x256 或者 512x512,如下图所示:
然后合成线程会按照视口附近的图块来优先生成位图,实际生成位图的操作是由栅格化来执行的。所谓栅格化,是指将图块转换为位图。而图块是栅格化执行的最小单位。渲染进程维护了一个栅格化的线程池,所有的图块栅格化都是在线程池内执行的,运行方式如下图所示:
「合成和显示」
一旦所有图块都被光栅化,合成线程就会生成一个绘制图块的命令——“DrawQuad”,然后将该命令提交给浏览器进程。浏览器进程里面有一个叫 viz 的组件,用来接收合成线程发过来的 DrawQuad 命令,然后根据 DrawQuad 命令,将其页面内容绘制到内存中,最后再将内存显示在屏幕上。到这里,经过这一系列的阶段,编写好的 HTML、CSS、JavaScript 等文件,经过浏览器就会显示出漂亮的页面了。
「渲染流水线大总结」
好了,我们现在已经分析完了整个渲染流程,不过需要提一下, 通常,栅格化过程都会使用 GPU 来加速生成,使用 GPU 生成位图的过程叫快速栅格化,或者 GPU 栅格化,生成的位图被保存在 GPU 内存中。相信你还记得,GPU 操作是运行在 GPU 进程中,如果栅格化操作使用了 GPU,那么最终生成位图的操作是在 GPU 中完成的,这就涉及到了跨进程操作。具体形式你可以参考下图:
从图中可以看出,渲染进程把生成图块的指令发送给 GPU,然后在 GPU 中执行生成图块的位图,并保存在 GPU 的内存中。
因此,从 HTML 到 DOM、样式计算、布局、图层、绘制、光栅化、合成和显示。下面我用一张图来总结下这整个渲染流程:
结合上图,一个完整的渲染流程大致可总结为如下:
渲染进程将 HTML 内容转换为能够读懂的 DOM 树结构。
渲染引擎将 CSS 样式表转化为浏览器可以理解的 styleSheets,计算出 DOM 节点的样式。
创建render树,并计算元素的布局信息。
对布局树进行分层,并生成分层树。
为每个图层生成绘制列表,并将其提交到合成线程。
合成线程将图层分成图块,并在光栅化线程池中将图块转换成位图。
合成线程发送绘制图块命令 DrawQuad 给浏览器进程。浏览器进程根据 DrawQuad 消息生成页面,并显示到显示器上。
首先渲染进程里执行图层合成(Layer Compositor),也就是生成图层的操作,具体地讲,渲染进程的合成线程接收到图层的绘制消息时,会通过光栅化线程池将其提交给GPU进程,在GPU进程中执行光栅化操作,执行完成,再将结果返回给渲染进程的合成线程,执行合成图层操作!
合成的图层会被提交给浏览器进程,浏览器进程里会执行显示合成(Display Compositor),也就是将所有的图层合成为可以显示的页面图片。最终显示器显示的就是浏览器进程中合成的页面图片
当面试官问你为什么需要有三次握手、三次握手的作用、讲讲三次三次握手的时候,我想很多人会这样回答:首先很多人会先讲下握手的过程:
第一次握手:客户端给服务器发送一个 SYN 报文。
第二次握手:服务器收到 SYN 报文之后,会应答一个 SYN+ACK 报文。
第三次握手:客户端收到 SYN+ACK 报文之后,会回应一个 ACK 报文。
服务器收到 ACK 报文之后,三次握手建立完成。
作用是为了确认双方的接收与发送能力是否正常。
这里我顺便解释一下为啥只有三次握手才能确认双方的接受与发送能力是否正常,而两次却不可以:
第一次握手:客户端发送网络包,服务端收到了。这样服务端就能得出结论:客户端的发送能力、服务端的接收能力是正常的。
第二次握手:服务端发包,客户端收到了。这样客户端就能得出结论:服务端的接收、发送能力,客户端的接收、发送能力是正常的。不过此时服务器并不能确认客户端的接收能力是否正常。
第三次握手:客户端发包,服务端收到了。这样服务端就能得出结论:客户端的接收、发送能力正常,服务器自己的发送、接收能力也正常。
因此,需要三次握手才能确认双方的接收与发送能力是否正常。
这样回答其实也是可以的,但我觉得,这个过程的我们应该要描述的更详细一点,因为三次握手的过程中,双方是由很多状态的改变的,而这些状态,也是面试官可能会问的点。所以我觉得在回答三次握手的时候,我们应该要描述的详细一点,而且描述的详细一点意味着可以扯久一点。加分的描述我觉得应该是这样:
刚开始客户端处于 closed 的状态,服务端处于 listen 状态。然后
第一次握手:客户端给服务端发一个 SYN 报文,并指明客户端的初始化序列号 ISN(c)。此时客户端处于 SYN_Send 状态。
第二次握手:服务器收到客户端的 SYN 报文之后,会以自己的 SYN 报文作为应答,并且也是指定了自己的初始化序列号 ISN(s),同时会把客户端的 ISN + 1 作为 ACK 的值,表示自己已经收到了客户端的 SYN,此时服务器处于 SYN_REVD 的状态。
第三次握手:客户端收到 SYN 报文之后,会发送一个 ACK 报文,当然,也是一样把服务器的 ISN + 1 作为 ACK 的值,表示已经收到了服务端的 SYN 报文,此时客户端处于 establised 状态。
服务器收到 ACK 报文之后,也处于 establised 状态,此时,双方以建立起了链接。
刚开始双方都处于 establised 状态,假如是客户端先发起关闭请求,则:
第一次挥手:客户端发送一个 FIN 报文,报文中会指定一个序列号。此时客户端处于FIN_WAIT1状态。
第二次握手:服务端收到 FIN 之后,会发送 ACK 报文,且把客户端的序列号值 + 1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT状态。
第三次挥手:如果服务端也想断开连接了,和客户端的第一次挥手一样,发给 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态。
第四次挥手:客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答,且把服务端的序列号值 + 1 作为自己 ACK 报文的序列号值,此时客户端处于 TIME_WAIT 状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态
服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态。
这里特别需要主要的就是TIME_WAIT这个状态了,这个是面试的高频考点,就是要理解,为什么客户端发送 ACK 之后不直接关闭,而是要等一阵子才关闭。这其中的原因就是,要确保服务器是否已经收到了我们的 ACK 报文,如果没有收到的话,服务器会重新发 FIN 报文给客户端,客户端再次收到 ACK 报文之后,就知道之前的 ACK 报文丢失了,然后再次发送 ACK 报文。至于 TIME_WAIT 持续的时间至少是一个报文的来回时间。一般会设置一个计时,如果过了这个计时没有再次收到 FIN 报文,则代表对方成功就是 ACK 报文,此时处于 CLOSED 状态。
(1)浏览器会检查缓存中有没有这个域名对应的解析过的IP地址,如果缓存中有,这个解析过程就结束。
(2).如果用户浏览器缓存中没有数据,浏览器会查找操作系统缓存中是否有这个域名对应的DNS解析结果。
(3)如果没有找到,在本地域名服务器(最近的一台DNS服务器)中查询IP地址
(4)如果没有找到,本地域名服务器会向根域名服务器发送一个请求
(5)如果根域名服务器中也不存在该域名,但判定这个域名属于“com”域,则本地域名服务器会向com顶级域名服务器发送一个请求
(6)如果com顶级域名服务器没有找到该域名,但判定这个域名属于“google.com”域,则本地域名服务器会向google.com域名服务器发送一个请求,以此类推
(7)直到本地域名服务器得到域名对应的IP地址,并将其缓存到本地,供下次查询使用
The text was updated successfully, but these errors were encountered:
No branches or pull requests
[@toc]
1.仅仅打开了 1 个页面,为什么有 4 个进程
因为打开 1 个页面至少需要 1 个网络进程、1 个浏览器进程、1 个 GPU 进程以及 1 个渲染进程,共 4 个;如果打开的页面有运行插件的话,还需要再加上 1 个插件进程。
通常情况下会是四个,但是有很多其他情况:
1:如果页面里有iframe的话,iframe也会运行在单独的进程中!
2:如果页面里有插件,同样插件也需要开启一个单独的进程!
3:如果你装了扩展的话,扩展也会占用进程
4:如果2个页面属于同一站点的话,并且从a页面中打开的b页面,那么他们会公用一个渲染进程
下面我们来逐个分析下这几个进程的功能。
「浏览器进程」。主要负责界面显示、用户交互、子进程管理,同时提供存储等功能。
「渲染进程」。核心任务是将 HTML、CSS 和 JavaScript 转换为用户可以与之交互的网页,排版引擎 Blink 和 JavaScript 引擎 V8 都是运行在该进程中,默认情况下,Chrome 会为每个 Tab 标签创建一个渲染进程。出于安全考虑,渲染进程都是运行在沙箱模式下。
「GPU 进程」。其实,Chrome 刚开始发布的时候是没有 GPU 进程的。而 GPU 的使用初衷是为了实现 3D CSS 的效果,只是随后网页、Chrome 的 UI 界面都选择采用 GPU 来绘制,这使得 GPU 成为浏览器普遍的需求。最后,Chrome 在其多进程架构上也引入了 GPU 进程。
「网络进程」。主要负责页面的网络资源加载,之前是作为一个模块运行在浏览器进程里面的,直至最近才独立出来,成为一个单独的进程。
「插件进程」。主要是负责插件的运行,因插件易崩溃,所以需要通过插件进程来隔离,以保证插件进程崩溃不会对浏览器和页面造成影响
2.tcp传送数据时 浏览器端就做渲染处理了么?如果前面数据包丢了 后面数据包先来是要等么?类似的那种实时渲染怎么处理?针对数据包的顺序性?
接收到http响应头中的「content-type」类型时就开始准备渲染进程了,
响应体数据一旦接受到便开始做DOM解析了!
基于http不用担心数据包丢失的问题,因为丢包和重传都是在tcp层解决的。http能保证数据按照顺序接收的!
3.从输入URL到导显示页面之导航流程
「用户输入URL按下回车键」,浏览器会根据用户输入的信息判断是搜索还是网址,如果是搜索内容,就将搜索内容+默认搜索引擎合成新的URL;如果用户输入的内容符合URL规则,浏览器就会根据URL协议,在这段内容上加上协议合成合法的URL,在继续这个过程前会执行「beforeunload」事件,浏览器导航栏显示loading状态,但是页面还是呈现前一个页面,这是因为要等渲染进程向浏览器进程「确认提交」,浏览器才会更新页面。
浏览器进程构建请求行信息,会通过进程间通信(IPC)将URL请求发送给网络进程
网络进程获取到URL,先去本地缓存中查找是否有缓存文件,如果有,拦截请求,直接200返回;否则,进入网络请求过程
网络进程请求DNS返回域名对应的IP和端口号,如果之前DNS数据缓存服务缓存过当前域名信息,就会直接返回缓存信息;否则,发起请求获取根据域名解析出来的IP和端口号(cdn解析下面单独讲),如果没有端口号,http默认80,https默认443。如果是https请求,还需要建立TLS连接。
Chrome 有个机制,同一个域名同时最多只能建立 6 个TCP 连接,如果在同一个域名下同时有 10 个请求发生,那么其中 4 个请求会进入排队等待状态,直至进行中的请求完成。如果当前请求数量少于6个,会直接建立TCP连接。
TCP三次握手建立连接,http请求加上TCP头部——包括源端口号、目的程序端口号和用于校验数据完整性的序号,向下传输(tcp三次握手,四次挥手细节下面单独讲)
网络层在数据包上加上IP头部——包括源IP地址和目的IP地址,继续向下传输到底层
底层通过物理网络传输给目的服务器主机
目的服务器主机网络层接收到数据包,解析出IP头部,识别出数据部分,将解开的数据包向上传输到传输层
目的服务器主机传输层获取到数据包,解析出TCP头部,识别端口,将解开的数据包向上传输到应用层
应用层HTTP解析请求头和请求体,如果需要重定向,HTTP直接返回HTTP响应数据的状态code301或者302,同时在请求头的Location字段中附上重定向地址,浏览器会根据code和Location进行重定向操作;如果不是重定向,首先服务器会根据 请求头中的If-None-Match 的值来判断请求的资源是否被更新,如果没有更新,就返回304状态码,相当于告诉浏览器之前的缓存还可以使用,就不返回新数据了;否则,返回新数据,200的状态码,并且如果想要浏览器缓存数据的话,就在相应头中加入字段:Cache-Control:Max-age=2000响应数据又顺着应用层——传输层——网络层——网络层——传输层——应用层的顺序返回到网络进程
数据传输完成,TCP四次挥手断开连接。如果,浏览器或者服务器在HTTP头部加上如下信息,TCP就一直保持连接。保持TCP连接可以省下下次需要建立连接的时间,提示资源加载速度Connection:Keep-Alive
网络进程将获取到的数据包进行解析,根据响应头中的Content-type来判断响应数据的类型,如果是字节流类型(其 Content-Type 的值是 application/octet-stream),就将该请求交给下载管理器,该导航流程结束,不再进行;如果是text/html类型,就把解析出来的响应头数据发送给通知浏览器进程获取到文档准备渲染(「到这里你应该明白第二问是为什么是在接收到content-type的时候开始准备渲染进程的了吧」),
浏览器进程获取到通知,根据当前页面B是否是从页面A打开的并且和页面A是否是同一个站点(根域名和协议一样就被认为是同一个站点),如果满足上述条件,就复用之前网页的进程,否则,新创建一个单独的渲染进程
浏览器会发出“提交导航(CommitNavigation时携带响应头等基本信息)”的消息给渲染进程,渲染进程收到消息后,会和网络进程建立传输数据的“管道”,文档数据传输完成后,渲染进程会返回“确认提交”的消息给浏览器进程
浏览器收到“确认提交”的消息后,会更新浏览器的页面状态,包括了安全状态、地址栏的 URL、前进后退的历史状态,并更新web页面,此时的web页面是空白页
4.从输入URL到导显示页面之导航流程
「构建 DOM 树」:这是因为浏览器无法直接理解和使用 HTML,所以需要将 HTML 转换为浏览器能够理解的结构——DOM 树
「样式计算」
在计算过程中需要遵守 CSS 的继承和层叠两个规则。这个阶段最终输出的内容是每个 DOM 节点的样式,并被保存在 ComputedStyle 的结构内
「生成render树」
你可能注意到了 DOM 树还含有很多不可见的元素,比如 head 标签,还有使用了 display:none 属性的元素。所以在显示之前,我们还要额外地构建一棵只包含可见元素布局树
「布局计算」
现在我们有了一棵完整的布局树。那么接下来,就要计算布局树节点的坐标位置了
「分层」
因为页面中有很多复杂的效果,如一些复杂的 3D 变换、页面滚动,或者使用 z-indexing 做 z 轴排序等,为了更加方便地实现这些效果,渲染引擎还需要为特定的节点生成专用的图层,并生成一棵对应的图层树(LayerTree)
通常满足下面两点中任意一点的元素就可以被提升为单独的一个图层
「图层绘制」在完成图层树的构建之后,渲染引擎会对图层树中的每个图层进行绘制,渲染引擎会把一个图层的绘制拆分成很多小的绘制指令,然后再把这些指令按照顺序组成一个待绘制列表
「栅格化(raster)操作」绘制列表只是用来记录绘制顺序和绘制指令的列表,而实际上绘制操作是由渲染引擎中的合成线程来完成的。你可以结合下图来看下渲染主线程和合成线程之间的关系:
如上图所示,当图层的绘制列表准备好之后,主线程会把该绘制列表提交(commit)给合成线程,那么接下来合成线程是怎么工作的呢?
合成线程会将图层划分为图块(tile),这些图块的大小通常是 256x256 或者 512x512,如下图所示:
然后合成线程会按照视口附近的图块来优先生成位图,实际生成位图的操作是由栅格化来执行的。所谓栅格化,是指将图块转换为位图。而图块是栅格化执行的最小单位。渲染进程维护了一个栅格化的线程池,所有的图块栅格化都是在线程池内执行的,运行方式如下图所示:
「合成和显示」
一旦所有图块都被光栅化,合成线程就会生成一个绘制图块的命令——“DrawQuad”,然后将该命令提交给浏览器进程。浏览器进程里面有一个叫 viz 的组件,用来接收合成线程发过来的 DrawQuad 命令,然后根据 DrawQuad 命令,将其页面内容绘制到内存中,最后再将内存显示在屏幕上。到这里,经过这一系列的阶段,编写好的 HTML、CSS、JavaScript 等文件,经过浏览器就会显示出漂亮的页面了。
「渲染流水线大总结」
好了,我们现在已经分析完了整个渲染流程,不过需要提一下, 通常,栅格化过程都会使用 GPU 来加速生成,使用 GPU 生成位图的过程叫快速栅格化,或者 GPU 栅格化,生成的位图被保存在 GPU 内存中。相信你还记得,GPU 操作是运行在 GPU 进程中,如果栅格化操作使用了 GPU,那么最终生成位图的操作是在 GPU 中完成的,这就涉及到了跨进程操作。具体形式你可以参考下图:
从图中可以看出,渲染进程把生成图块的指令发送给 GPU,然后在 GPU 中执行生成图块的位图,并保存在 GPU 的内存中。
因此,从 HTML 到 DOM、样式计算、布局、图层、绘制、光栅化、合成和显示。下面我用一张图来总结下这整个渲染流程:
结合上图,一个完整的渲染流程大致可总结为如下:
渲染进程将 HTML 内容转换为能够读懂的 DOM 树结构。
渲染引擎将 CSS 样式表转化为浏览器可以理解的 styleSheets,计算出 DOM 节点的样式。
创建render树,并计算元素的布局信息。
对布局树进行分层,并生成分层树。
为每个图层生成绘制列表,并将其提交到合成线程。
合成线程将图层分成图块,并在光栅化线程池中将图块转换成位图。
合成线程发送绘制图块命令 DrawQuad 给浏览器进程。浏览器进程根据 DrawQuad 消息生成页面,并显示到显示器上。
5.关于显示
首先渲染进程里执行图层合成(Layer Compositor),也就是生成图层的操作,具体地讲,渲染进程的合成线程接收到图层的绘制消息时,会通过光栅化线程池将其提交给GPU进程,在GPU进程中执行光栅化操作,执行完成,再将结果返回给渲染进程的合成线程,执行合成图层操作!
合成的图层会被提交给浏览器进程,浏览器进程里会执行显示合成(Display Compositor),也就是将所有的图层合成为可以显示的页面图片。最终显示器显示的就是浏览器进程中合成的页面图片
6.三次握手
当面试官问你为什么需要有三次握手、三次握手的作用、讲讲三次三次握手的时候,我想很多人会这样回答:首先很多人会先讲下握手的过程:
第一次握手:客户端给服务器发送一个 SYN 报文。
第二次握手:服务器收到 SYN 报文之后,会应答一个 SYN+ACK 报文。
第三次握手:客户端收到 SYN+ACK 报文之后,会回应一个 ACK 报文。
服务器收到 ACK 报文之后,三次握手建立完成。
作用是为了确认双方的接收与发送能力是否正常。
这里我顺便解释一下为啥只有三次握手才能确认双方的接受与发送能力是否正常,而两次却不可以:
第一次握手:客户端发送网络包,服务端收到了。这样服务端就能得出结论:客户端的发送能力、服务端的接收能力是正常的。
第二次握手:服务端发包,客户端收到了。这样客户端就能得出结论:服务端的接收、发送能力,客户端的接收、发送能力是正常的。不过此时服务器并不能确认客户端的接收能力是否正常。
第三次握手:客户端发包,服务端收到了。这样服务端就能得出结论:客户端的接收、发送能力正常,服务器自己的发送、接收能力也正常。
因此,需要三次握手才能确认双方的接收与发送能力是否正常。
这样回答其实也是可以的,但我觉得,这个过程的我们应该要描述的更详细一点,因为三次握手的过程中,双方是由很多状态的改变的,而这些状态,也是面试官可能会问的点。所以我觉得在回答三次握手的时候,我们应该要描述的详细一点,而且描述的详细一点意味着可以扯久一点。加分的描述我觉得应该是这样:
刚开始客户端处于 closed 的状态,服务端处于 listen 状态。然后
第一次握手:客户端给服务端发一个 SYN 报文,并指明客户端的初始化序列号 ISN(c)。此时客户端处于 SYN_Send 状态。
第二次握手:服务器收到客户端的 SYN 报文之后,会以自己的 SYN 报文作为应答,并且也是指定了自己的初始化序列号 ISN(s),同时会把客户端的 ISN + 1 作为 ACK 的值,表示自己已经收到了客户端的 SYN,此时服务器处于 SYN_REVD 的状态。
第三次握手:客户端收到 SYN 报文之后,会发送一个 ACK 报文,当然,也是一样把服务器的 ISN + 1 作为 ACK 的值,表示已经收到了服务端的 SYN 报文,此时客户端处于 establised 状态。
服务器收到 ACK 报文之后,也处于 establised 状态,此时,双方以建立起了链接。
7.四次挥手
刚开始双方都处于 establised 状态,假如是客户端先发起关闭请求,则:
第一次挥手:客户端发送一个 FIN 报文,报文中会指定一个序列号。此时客户端处于FIN_WAIT1状态。
第二次握手:服务端收到 FIN 之后,会发送 ACK 报文,且把客户端的序列号值 + 1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT状态。
第三次挥手:如果服务端也想断开连接了,和客户端的第一次挥手一样,发给 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态。
第四次挥手:客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答,且把服务端的序列号值 + 1 作为自己 ACK 报文的序列号值,此时客户端处于 TIME_WAIT 状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态
服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态。
这里特别需要主要的就是TIME_WAIT这个状态了,这个是面试的高频考点,就是要理解,为什么客户端发送 ACK 之后不直接关闭,而是要等一阵子才关闭。这其中的原因就是,要确保服务器是否已经收到了我们的 ACK 报文,如果没有收到的话,服务器会重新发 FIN 报文给客户端,客户端再次收到 ACK 报文之后,就知道之前的 ACK 报文丢失了,然后再次发送 ACK 报文。至于 TIME_WAIT 持续的时间至少是一个报文的来回时间。一般会设置一个计时,如果过了这个计时没有再次收到 FIN 报文,则代表对方成功就是 ACK 报文,此时处于 CLOSED 状态。
8.DNS解析
(1)浏览器会检查缓存中有没有这个域名对应的解析过的IP地址,如果缓存中有,这个解析过程就结束。
(2).如果用户浏览器缓存中没有数据,浏览器会查找操作系统缓存中是否有这个域名对应的DNS解析结果。
(3)如果没有找到,在本地域名服务器(最近的一台DNS服务器)中查询IP地址
(4)如果没有找到,本地域名服务器会向根域名服务器发送一个请求
(5)如果根域名服务器中也不存在该域名,但判定这个域名属于“com”域,则本地域名服务器会向com顶级域名服务器发送一个请求
(6)如果com顶级域名服务器没有找到该域名,但判定这个域名属于“google.com”域,则本地域名服务器会向google.com域名服务器发送一个请求,以此类推
(7)直到本地域名服务器得到域名对应的IP地址,并将其缓存到本地,供下次查询使用
The text was updated successfully, but these errors were encountered: