-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlinkState.c
251 lines (204 loc) · 7.21 KB
/
linkState.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#include "graph.h"
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <stddef.h>
#include <stdbool.h>
// Structure to represent a min heap node
struct MinHeapNode
{
int v;
int dist;
};
// Structure to represent a min heap
struct MinHeap
{
int size; // Number of heap nodes present currently
int capacity; // Capacity of min heap
int *pos; // This is needed for decreaseKey()
struct MinHeapNode **array;
};
struct MinHeapNode* newMinHeapNode(int v, int dist)
{
struct MinHeapNode* minHeapNode =
(struct MinHeapNode*) malloc(sizeof(struct MinHeapNode));
minHeapNode->v = v;
minHeapNode->dist = dist;
return minHeapNode;
}
// A utility function to create a Min Heap
struct MinHeap* createMinHeap(int capacity)
{
struct MinHeap* minHeap =
(struct MinHeap*) malloc(sizeof(struct MinHeap));
minHeap->pos = (int *)malloc(capacity * sizeof(int));
minHeap->size = 0;
minHeap->capacity = capacity;
minHeap->array =
(struct MinHeapNode**) malloc(capacity * sizeof(struct MinHeapNode*));
return minHeap;
}
void doReliableFlooding(graph *topology){
int v = topology->numVertex;
for(int i =0; i < v; i++){
topology->routersArray[i].linkStateDatabase = topology;
}
}
// A utility function to create a new Min Heap Node *///
// A utility function to swap two nodes of min heap. Needed for min heapify
void swapMinHeapNode(struct MinHeapNode** a, struct MinHeapNode** b)
{
struct MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// A standard function to heapify at given idx
// This function also updates position of nodes when they are swapped.
// Position is needed for decreaseKey()
void minHeapify(struct MinHeap* minHeap, int idx)
{
int smallest, left, right;
smallest = idx;
left = 2 * idx + 1;
right = 2 * idx + 2;
if (left < minHeap->size &&
minHeap->array[left]->dist < minHeap->array[smallest]->dist )
smallest = left;
if (right < minHeap->size &&
minHeap->array[right]->dist < minHeap->array[smallest]->dist )
smallest = right;
if (smallest != idx)
{
// The nodes to be swapped in min heap
struct MinHeapNode *smallestNode = minHeap->array[smallest];
struct MinHeapNode *idxNode = minHeap->array[idx];
// Swap positions
minHeap->pos[smallestNode->v] = idx;
minHeap->pos[idxNode->v] = smallest;
// Swap nodes
swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]);
minHeapify(minHeap, smallest);
}
}
// A utility function to check if the given minHeap is ampty or not
int isEmpty(struct MinHeap* minHeap)
{
return minHeap->size == 0;
}
// Standard function to extract minimum node from heap
struct MinHeapNode* extractMin(struct MinHeap* minHeap)
{
if (isEmpty(minHeap))
return NULL;
// Store the root node
struct MinHeapNode* root = minHeap->array[0];
// Replace root node with last node
struct MinHeapNode* lastNode = minHeap->array[minHeap->size - 1];
minHeap->array[0] = lastNode;
// Update position of last node
minHeap->pos[root->v] = minHeap->size-1;
minHeap->pos[lastNode->v] = 0;
// Reduce heap size and heapify root
--minHeap->size;
minHeapify(minHeap, 0);
return root;
}
// Function to decreasy dist value of a given vertex v. This function
// uses pos[] of min heap to get the current index of node in min heap
void decreaseKey(struct MinHeap* minHeap, int v, int dist)
{
// Get the index of v in heap array
int i = minHeap->pos[v];
// Get the node and update its dist value
minHeap->array[i]->dist = dist;
// Travel up while the complete tree is not hepified.
// This is a O(Logn) loop
while (i && minHeap->array[i]->dist < minHeap->array[(i - 1) / 2]->dist)
{
// Swap this node with its parent
minHeap->pos[minHeap->array[i]->v] = (i-1)/2;
minHeap->pos[minHeap->array[(i-1)/2]->v] = i;
swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) / 2]);
// move to parent index
i = (i - 1) / 2;
}
}
// A utility function to check if a given vertex
// 'v' is in min heap or not
bool isInMinHeap(struct MinHeap *minHeap, int v)
{
if (minHeap->pos[v] < minHeap->size)
return true;
return false;
}
// The main function that calulates distances of shortest paths from src to all
// vertices. It is a O(ELogV) function
void dijkstra(graph *topology, int src)
{
int V = topology->numVertex;
// Get the number of vertices in graph
int dist[V];
// dist values used to pick minimum weight edge in cut
// minHeap represents set E
struct MinHeap* minHeap = createMinHeap(V);
// Initialize min heap with all vertices. dist value of all vertices
for (int v = 0; v < V; ++v)
{
dist[v] = INT_MAX;
minHeap->array[v] = newMinHeapNode(v, dist[v]);
minHeap->pos[v] = v;
}
// Make dist value of src vertex as 0 so that it is extracted first
minHeap->array[src] = newMinHeapNode(src, dist[src]);
minHeap->pos[src] = src;
dist[src] = 0;
decreaseKey(minHeap, src, dist[src]);
// Initially size of min heap is equal to V
minHeap->size = V;
// In the followin loop, min heap contains all nodes
// whose shortest distance is not yet finalized.
int v1= topology->numVertex;
int e1=MAXIMUM_INTERFACE_PER_NODE;
interface *intf;
while (!isEmpty(minHeap))
{
// Extract the vertex with minimum distance value
struct MinHeapNode* minHeapNode = extractMin(minHeap);
int u = minHeapNode->v; // Store the extracted vertex number
// printf("%d \n",u);
for (int j=0;j<e1;j++)
{
intf = topology->routersArray[u].intf[j];
// when to break looop
if(!intf)
break;
edge *link = intf->attachedEdge;
node *neighbourNode = getNeighbourNode(intf);
int index = getIndexOfNode(neighbourNode,topology);
//cost
int weight=link->cost;
// Traverse through all adjacent vertices of u (the extracted vertex) and update their distance values
// If shortest distance to v is not finalized yet, and distance to v
// through u is less than its previously calculated distance
if (isInMinHeap(minHeap, index) && dist[u] != INT_MAX &&
weight + dist[u] < dist[index])
{
dist[index] = dist[u] + weight;
topology->routersArray[src].rt.costArray[index] = dist[u]+weight;
// topology->routersArray[src].rt.viaRouters[index] = *neighbourNode;
// update distance value in min heap also
decreaseKey(minHeap, index, dist[index]);
}
}
}
}
void linkState(graph *topology)
{
int V = topology->numVertex;
int src;
for(int i=0;i<V;i++)
{
src=i;
dijkstra(topology->routersArray[i].linkStateDatabase, src);
}
}