-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphosproteomics_F442A_script_2.R
554 lines (503 loc) · 22.7 KB
/
phosproteomics_F442A_script_2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
### Data analysis - 2, phosphoproteomics, F442A cells
# Script used for analyzing phophoproteome composition and calculate
# significant differences
# Niels Banhos Danneskiold-Samsoee, Sep 16 2022
# clear workspace
rm(list=ls())
library(Matrix)
library(readxl)
library(DEP)
library(dplyr)
library(SummarizedExperiment)
library(org.Mm.eg.db)
library(AnnotationDbi)
library(purrr)
library(ggplot2)
library(RColorBrewer)
library(eulerr)
# set working directory
setwd("~/Isthmin phoshoproteomics")
# Loading raw data and experimental design
data_norm <- readRDS("data_norm_log.rds")
experimental_design <- read.csv("ed.txt", header=T,sep = "\t")
pp_norm <- data_norm
# Calculating PCA scores using all proteins
d <- assay(pp_norm) %>% data.frame()
d[is.na(d)] <- 0
phosprot_pca <- prcomp(as.matrix(t(d)),center = TRUE, scale. = TRUE)
#drawing PCA scores using all proteins as input
pc1<-phosprot_pca$x[,1]
pc2<-phosprot_pca$x[,2]
scores<-data.frame(pc1,pc2)
scores$treatment <- experimental_design$condition
scores$replicate <- experimental_design$replicate
ggplot(data=scores, aes()) +
geom_point(aes(pc1, pc2,color = factor(treatment),fill = factor(treatment)),
size=4, alpha=0.75) +
scale_shape_manual(values=c(22,21,24), name="replicate") +
scale_fill_manual(values=brewer.pal(9, "Set1"), name="treatment") +
scale_color_manual(values=brewer.pal(9, "Set1"), name="treatment") +
xlab(paste("PC1 (",toString(round(
summary(phosprot_pca)$importance[2]*100,2)),"%)", collapse = ",")) +
ylab(paste("PC2 (",toString(round(
summary(phosprot_pca)$importance[5]*100,2)),"%)", collapse = ",")) +
theme_classic() +
theme(legend.title = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_text(size=16,family="sans"),
axis.text.y = element_blank(),
axis.title.y = element_text(size=16,family="sans"),
legend.text = element_text(size=16,family="sans"))
ggsave(paste0("plots/",paste0("PCA",".jpeg")),
units="cm", width=8, height=6, dpi=600)
ggsave(file=paste0("plots/",paste0("PCA",".svg")),
width=8, height=6)
## Investigating effect of imputation and imputation algorithm on
## significant phosphopeptides
data_imp <- impute(pp_norm, fun = "MinProb", q = 0.01)
minprop <- test_diff(data_imp, type = "manual",
test = "BSA_vs_INS")
minprop <- add_rejections(minprop, alpha = 0.05, lfc = 0)
table(minprop@elementMetadata@listData$significant)
data_imp <- impute(pp_norm, fun = "MinProb", q = 0.01)
minprop2 <- test_diff(data_imp, type = "manual",
test = "BSA_vs_INS")
minprop2 <- add_rejections(minprop2, alpha = 0.05, lfc = 0)
data_imp <- impute(pp_norm, fun = "MinProb", q = 0.01)
minprop3 <- test_diff(data_imp, type = "manual",
test = "BSA_vs_INS")
minprop3 <- add_rejections(minprop3, alpha = 0.05, lfc = 0)
table(minprop2@elementMetadata@listData$significant)
data_imp <- impute(pp_norm, fun = "QRILC")
QRILC <- test_diff(data_imp, type = "manual",
test = "BSA_vs_INS")
QRILC <- add_rejections(QRILC, alpha = 0.05, lfc = 0)
table(QRILC@elementMetadata@listData$significant)
data_imp <- impute(pp_norm, fun = "man")
man <- test_diff(data_imp, type = "manual",
test = "BSA_vs_INS")
man <- add_rejections(man, alpha = 0.05, lfc = 0)
table(man@elementMetadata@listData$significant)
# making venn diagrams of significant phosphopeptides
minprop <- rownames(assay(minprop))[minprop@elementMetadata@listData$significant]
QRILC <- rownames(assay(QRILC))[QRILC@elementMetadata@listData$significant]
man <- rownames(assay(man))[man@elementMetadata@listData$significant]
imp <- list(minprop=minprop, QRILC=QRILC,man=man)
plot(euler(imp, shape = "ellipse"), quantities = TRUE)
for(i in 1:length(imp)){
write.table(data.frame(imp[[i]]),file=paste0("review/tables/",
"imputation_venn_diagram_",i,".tsv"),append=TRUE, row.names=FALSE)
}
minprop2 <- rownames(assay(minprop2))[minprop2@elementMetadata@listData$significant]
minprop3 <- rownames(assay(minprop3))[minprop3@elementMetadata@listData$significant]
imp <- list(minprop=minprop, minprop2=minprop2,minprop3=minprop3)
plot(euler(imp, shape = "ellipse"), quantities = TRUE)
data_norm@assays@data@listData[[1]][grep("Insr",
rownames(data_norm@assays@data@listData[[1]])),]
data_imp@assays@data@listData[[1]][grep("Insr",
rownames(data_imp@assays@data@listData[[1]])),]
# Summary: all imputation algorithms (QRILC, MinProb or man)
# sets missing values to low intensity with the lack of
# signal for both replicates. It is likely not reflecting the true value
# as the insulin receptor should not be phosphorylated by BSA.
# Minprop leads to fewer significant phosphopeptides compared to man and
# QRILC. The phosphopeptides only significant by minprop is ~8%.
# Since Minprop yields a more `conservative` estimate we continue with this
# imputation method.
data_imp <- impute(pp_norm, fun = "MinProb", q = 0.01)
# Plotting intensity distributions and cumulative fraction of
# proteins with and without missing values
plot_detect(pp_norm)
# Summary: proteins with missing values have lower intensities
# Plotting intensity distributions before and after imputation
plot_imputation(pp_norm, data_imp)
# Testing whether insulin significantly phosporylates the insulin receptor
# using imputation
data_imp <- impute(pp_norm, fun = "MinProb", q = 0.01)
data_diff_BSA_vs_INS <- test_diff(data_imp, type = "manual",
test = "BSA_vs_INS")
# Denoting significant proteins
dep <- add_rejections(data_diff_BSA_vs_INS, alpha = 0.05, lfc = 0)
table(dep@elementMetadata@listData$significant)
as.data.frame(dep@elementMetadata@listData)[grep("Insr",
dep@elementMetadata@listData[[1]]),]
# As sample size is low, non-deterministic imputation results in
# insulin receptor not always significantly phosphorylated by insulin
plot_frequency(data_norm)
# No filtering
no_filter <- data_norm
# Filter for proteins that are quantified in all replicates of at least one condition
condition_filter <- filter_proteins(data_norm, "condition", thr = 0)
# Filter for proteins that are quantified in at least 2 of the samples.
frac_norm_filter13 <- filter_proteins(data_norm, "fraction", min = 1/3)
# Filter for proteins that are quantified in at least 2/3 of the samples.
frac_norm_filter23 <- filter_proteins(data_norm, "fraction", min = 0.66)
# Filter for proteins that have no missing values
complete_cases <- filter_proteins(data_norm, "complete")
# Function to extract significant peptides between BSA and INS
DE_analysis <- function(se) {
se %>%
impute(., fun = "MinProb", q = 0.01) %>%
test_diff(., type = "manual", test = "BSA_vs_INS") %>%
add_rejections(., alpha = 0.05, lfc = 0) %>%
get_results()
}
no_filter <- DE_analysis(no_filter)
condition_filter <- DE_analysis(condition_filter)
frac_norm_filter13 <- DE_analysis(frac_norm_filter13)
frac_norm_filter23 <- DE_analysis(frac_norm_filter23)
complete_cases <- DE_analysis(complete_cases)
# Function to extract number of DE peptides
DE_prots <- function(results) {
data_frame(Dataset = gsub("_results", "", results),
significant_proteins = get(results) %>%
filter(significant) %>%
nrow())
}
# Number of bg and DE proteins still included
objects <- c("no_filter",
"condition_filter",
"frac_norm_filter13",
"frac_norm_filter23",
"complete_cases")
map_df(objects, DE_prots)
# No filtering
no_filter <- data_norm
# Filter for proteins that are quantified in all replicates of at least one condition
condition_filter <- filter_proteins(data_norm, "condition", thr = 0)
# Filter for proteins that are quantified in at least 2 of the samples.
frac_norm_filter13 <- filter_proteins(data_norm, "fraction", min = 1/3)
# Filter for proteins that are quantified in at least 2/3 of the samples.
frac_norm_filter23 <- filter_proteins(data_norm, "fraction", min = 0.66)
# Filter for proteins that have no missing values
complete_cases <- filter_proteins(data_norm, "complete")
# Function to extract significant peptides between BSA and ISM
DE_analysis <- function(se) {
se %>%
impute(., fun = "MinProb", q = 0.01) %>%
test_diff(., type = "manual", test = "BSA_vs_ISM1") %>%
add_rejections(., alpha = 0.05, lfc = 0) %>%
get_results()
}
no_filter <- DE_analysis(no_filter)
condition_filter <- DE_analysis(condition_filter)
frac_norm_filter13 <- DE_analysis(frac_norm_filter13)
frac_norm_filter23 <- DE_analysis(frac_norm_filter23)
complete_cases <- DE_analysis(complete_cases)
map_df(objects, DE_prots)
data_norm_filter <- frac_norm_filter13
# Extract protein names with missing values
# in all replicates of at least one condition
#proteins_MNAR <- get_df_long(data_norm_filter) %>%
# group_by(name, condition) %>%
# summarize(NAs = all(is.na(intensity))) %>%
# filter(NAs) %>%
# pull(name) %>%
# unique()
# Get a logical vector
# MNAR <- names(data_norm_filter) %in% proteins_MNAR
# Perform a mixed imputation
#data_norm_filter <- impute(
# data_norm_filter,
# fun = "mixed",
# randna = !MNAR, # we have to define MAR which is the opposite of MNAR
# mar = "knn", # imputation function for MAR
# mnar = "MinProb") # imputation function for MNAR
# Using permutations to mitigate effects of non-deterministic variation in
# results due to imputation. Testing number of permutations necessary to avoid
# differences in significant genes.
p.vals <- data.frame()
padj.vals <- data.frame()
differences <- data.frame()
sig_permute_minprob <- NULL
pp_name <- data.frame(pp_name=data_norm_filter@elementMetadata@listData$name)
permutations <- 300
# Loop that permutes imputation and significance testing. Compares if more
# permutations lead to further smoothing of results.
for (i in 1:permutations){
data_imp <- impute(data_norm_filter, fun = "MinProb", q = 0.01)
data_diff_BSA_vs_ISM1 <- suppressMessages(test_diff(
data_imp, type = "manual", test = "ISM1_vs_BSA"))
data_diff_BSA_vs_ISM1 <- add_rejections(data_diff_BSA_vs_ISM1,
alpha = 0.05, lfc = 0)
padj.val <- data_diff_BSA_vs_ISM1@elementMetadata@listData$ISM1_vs_BSA_p.adj
if (i==1){
padj.vals <- cbind(pp_name,padj.val)
}
if (i==2){
p.vals.old <- data.frame(pp_name, padj.vals=padj.vals[,2])
p.vals.old <- pp_name$pp_name[p.vals.old$padj.vals <0.05]
padj.vals <- cbind(padj.vals,padj.val)
p.vals.new <- data.frame(pp_name,
padj.vals=apply(padj.vals[,2:(3)], 1,
FUN = median,na.rm=TRUE))
p.vals.new <- pp_name$pp_name[p.vals.new$padj.vals <0.05]
differences <- rbind(differences,length(setdiff(p.vals.old,p.vals.new)))
}
if (i>2){
p.vals.old <- data.frame(pp_name,
padj.vals=apply(padj.vals[,2:i], 1,
FUN = median,na.rm=TRUE))
p.vals.old <- pp_name$pp_name[p.vals.old$padj.vals <0.05]
padj.vals <- cbind(padj.vals,padj.val)
# Finding out whether adding one test changes the conclusion on a peptide
p.vals.new <- data.frame(pp_name,
padj.vals=apply(padj.vals[,2:(i+1)], 1,
FUN = median,na.rm=TRUE))
p.vals.new <- pp_name$pp_name[p.vals.new$padj.vals <0.05]
differences <- rbind(differences,length(setdiff(p.vals.old,p.vals.new)))
}
if (i %% 10 ==0) print(i)
if (i==permutations){
}
}
head(differences)
colnames(differences) <- c("diff")
differences$sum <- cumsum(differences$diff)
differences$permutation <- row.names(differences)
head(differences)
plot(differences$permutation,differences$sum, xlab="Permutation",
ylab="Cumulative differences in number of significant peptides by adding an extra permutation")
# Summary: 200 permutations seem to be sufficient to smooth variation in
# significance due to imputation
# Finding median p-values and median fold changes testing ISM1 against BSA,
# as well as median imputed values across permutations using MinProp
p.vals <- data.frame()
padj.vals <- data.frame()
fc.vals <- data.frame()
p.vals.ISMvsBSA <- data.frame()
padj.vals.ISMvsBSA <- data.frame()
fc.vals.ISMvsBSA <- data.frame()
pp_name <- data.frame(pp_name=data_norm_filter@elementMetadata@listData$name)
bsa1 <- data.frame()
bsa2 <- data.frame()
ins1 <- data.frame()
ins2 <- data.frame()
ism1 <- data.frame()
ism2 <- data.frame()
imputed.vals <- data.frame()
permutations <- 200
for (i in 1:permutations){
data_imp <- impute(data_norm_filter, fun = "MinProb", q = 0.01)
data_diff_BSA_vs_ISM1 <- suppressMessages(test_diff(
data_imp, type = "manual", test = "ISM1_vs_BSA"))
data_diff_BSA_vs_ISM1 <- add_rejections(data_diff_BSA_vs_ISM1,
alpha = 0.05, lfc = 0)
p.val <- data_diff_BSA_vs_ISM1@elementMetadata@listData$ISM1_vs_BSA_p.val
padj.val <- data_diff_BSA_vs_ISM1@elementMetadata@listData$ISM1_vs_BSA_p.adj
fc <- data_diff_BSA_vs_ISM1@elementMetadata@listData$ISM1_vs_BSA_diff
if (i==1){
p.vals <- cbind(pp_name,p.val)
padj.vals <- cbind(pp_name,padj.val)
fc.vals <- cbind(pp_name,fc)
bsa1 <- as.data.frame(assay(data_diff_BSA_vs_ISM1))$BSA_1
bsa2 <- as.data.frame(assay(data_diff_BSA_vs_ISM1))$BSA_2
ins1 <- as.data.frame(assay(data_diff_BSA_vs_ISM1))$INS_1
ins2 <- as.data.frame(assay(data_diff_BSA_vs_ISM1))$INS_2
ism1 <- as.data.frame(assay(data_diff_BSA_vs_ISM1))$ISM1_1
ism2 <- as.data.frame(assay(data_diff_BSA_vs_ISM1))$ISM1_2
}
if (i>1){
p.vals <- cbind(p.vals,p.val)
padj.vals <- cbind(padj.vals,padj.val)
fc.vals <- cbind(fc.vals,fc)
bsa1 <- cbind(bsa1,as.data.frame(assay(data_diff_BSA_vs_ISM1))$BSA_1)
bsa2 <- cbind(bsa2,as.data.frame(assay(data_diff_BSA_vs_ISM1))$BSA_2)
ins1 <- cbind(ins1,as.data.frame(assay(data_diff_BSA_vs_ISM1))$INS_1)
ins2 <- cbind(ins2,as.data.frame(assay(data_diff_BSA_vs_ISM1))$INS_2)
ism1 <- cbind(ism1,as.data.frame(assay(data_diff_BSA_vs_ISM1))$ISM1_1)
ism2 <- cbind(ism2,as.data.frame(assay(data_diff_BSA_vs_ISM1))$ISM1_2)
}
if (i %% 10 ==0) print(i)
if (i==permutations){
p.vals.ISMvsBSA <- data.frame(pp_name,
p.vals.median=apply(p.vals[,2:permutations], 1, FUN = median,na.rm=TRUE))
padj.vals.ISMvsBSA <- data.frame(pp_name,
padj.vals.median=apply(padj.vals[,2:permutations], 1,
FUN = median,na.rm=TRUE))
fc.vals.ISMvsBSA <- data.frame(pp_name,
fc.vals.median=apply(fc.vals[,2:permutations], 1,
FUN = median,na.rm=TRUE))
imputed.vals <- data.frame(pp_name,
BSA_1=apply(bsa1[,1:permutations], 1, FUN = median,na.rm=TRUE),
BSA_2=apply(bsa2[,1:permutations], 1, FUN = median,na.rm=TRUE),
INS_1=apply(ins1[,1:permutations], 1, FUN = median,na.rm=TRUE),
INS_2=apply(ins2[,1:permutations], 1, FUN = median,na.rm=TRUE),
ISM1_1=apply(ism1[,1:permutations], 1, FUN = median,na.rm=TRUE),
ISM1_2=apply(ism2[,1:permutations], 1, FUN = median,na.rm=TRUE))
}
}
rm(bsa1,bsa2,ins1,ins2,ism1,ism2, p.vals, padj.vals, fc.vals)
rownames(imputed.vals) <- imputed.vals$pp_name
imputed.vals <- imputed.vals[,-1]
head(imputed.vals)
head(p.vals.ISMvsBSA)
table(p.vals.ISMvsBSA < 0.05)
table(padj.vals.ISMvsBSA < 0.05)
head(fc.vals.ISMvsBSA)
# Adding p-values and fold change to normalized data
data_norm_filter@elementMetadata@listData$p.vals.ISMvsBSA <-
p.vals.ISMvsBSA$p.vals.median
data_norm_filter@elementMetadata@listData$padj.vals.ISMvsBSA <-
padj.vals.ISMvsBSA$padj.vals.median
data_norm_filter@elementMetadata@listData$fc.vals.ISMvsBSA <-
fc.vals.ISMvsBSA$fc.vals.median
# Finding median p-values and median fold changes testing INS against BSA
p.vals <- data.frame()
padj.vals <- data.frame()
fc.vals <- data.frame()
p.vals.INSvsBSA <- data.frame()
padj.vals.INSvsBSA <- data.frame()
fc.vals.INSvsBSA <- data.frame()
pp_name <- data.frame(pp_name=data_norm_filter@elementMetadata@listData$name)
permutations <- 200
for (i in 1:permutations){
data_imp <- impute(data_norm_filter, fun = "MinProb", q = 0.01)
data_diff_BSA_vs_INS <- suppressMessages(test_diff(data_imp,
type = "manual", test = "INS_vs_BSA"))
data_diff_BSA_vs_INS <- add_rejections(data_diff_BSA_vs_INS,
alpha = 0.05, lfc = 0)
p.val <- data_diff_BSA_vs_INS@elementMetadata@listData$INS_vs_BSA_p.val
padj.val <- data_diff_BSA_vs_INS@elementMetadata@listData$INS_vs_BSA_p.adj
fc <- data_diff_BSA_vs_INS@elementMetadata@listData$INS_vs_BSA_diff
if (i==1){
p.vals <- cbind(pp_name,p.val)
padj.vals <- cbind(pp_name,padj.val)
fc.vals <- cbind(pp_name,fc)
}
if (i>1){
p.vals <- cbind(p.vals,p.val)
padj.vals <- cbind(padj.vals,padj.val)
fc.vals <- cbind(fc.vals,fc)
}
if (i %% 10 ==0) print(i)
if (i==permutations){
p.vals.INSvsBSA <- data.frame(pp_name,p.vals.median=apply(
p.vals[,2:permutations], 1, FUN = median,na.rm=TRUE))
padj.vals.INSvsBSA <- data.frame(
pp_name,padj.vals.median=apply(padj.vals[,2:permutations], 1,
FUN = median,na.rm=TRUE))
fc.vals.INSvsBSA <- data.frame(pp_name,fc.vals.median=apply(
fc.vals[,2:permutations], 1, FUN = median,na.rm=TRUE))
}
}
rm(p.vals, padj.vals, fc.vals)
head(p.vals.INSvsBSA)
table(p.vals.INSvsBSA < 0.05)
table(padj.vals.INSvsBSA < 0.05)
head(fc.vals.INSvsBSA)
# Adding p-values and fold change to normalized data
data_norm_filter@elementMetadata@listData$p.vals.INSvsBSA <-
p.vals.INSvsBSA$p.vals.median
data_norm_filter@elementMetadata@listData$padj.vals.INSvsBSA <-
padj.vals.INSvsBSA$padj.vals.median
data_norm_filter@elementMetadata@listData$fc.vals.INSvsBSA <-
fc.vals.INSvsBSA$fc.vals.median
# Finding median p-values and median fold changes testing ISM1 against INS
p.vals <- data.frame()
padj.vals <- data.frame()
fc.vals <- data.frame()
p.vals.ISMvsINS <- data.frame()
padj.vals.ISMvsINS <- data.frame()
fc.vals.ISMvsINS <- data.frame()
pp_name <- data.frame(pp_name=data_norm_filter@elementMetadata@listData$name)
permutations <- 200
for (i in 1:permutations){
data_imp <- impute(data_norm_filter, fun = "MinProb", q = 0.01)
data_diff_INS_vs_ISM1 <- suppressMessages(test_diff(data_imp,
type = "manual", test = "ISM1_vs_INS"))
data_diff_INS_vs_ISM1 <- add_rejections(data_diff_INS_vs_ISM1,
alpha = 0.05, lfc = 0)
p.val <- data_diff_INS_vs_ISM1@elementMetadata@listData$ISM1_vs_INS_p.val
padj.val <- data_diff_INS_vs_ISM1@elementMetadata@listData$ISM1_vs_INS_p.adj
fc <- data_diff_INS_vs_ISM1@elementMetadata@listData$ISM1_vs_INS_diff
if (i==1){
p.vals <- cbind(pp_name,p.val)
padj.vals <- cbind(pp_name,padj.val)
fc.vals <- cbind(pp_name,fc)
}
if (i>1){
p.vals <- cbind(p.vals,p.val)
padj.vals <- cbind(padj.vals,padj.val)
fc.vals <- cbind(fc.vals,fc)
}
if (i %% 10 ==0) print(i)
if (i==permutations){
p.vals.ISMvsINS <- data.frame(pp_name,p.vals.median=apply(
p.vals[,2:permutations], 1, FUN = median,na.rm=TRUE))
padj.vals.ISMvsINS <- data.frame(pp_name,padj.vals.median=apply(
padj.vals[,2:permutations], 1, FUN = median,na.rm=TRUE))
fc.vals.ISMvsINS <- data.frame(pp_name,fc.vals.median=apply(
fc.vals[,2:permutations], 1, FUN = median,na.rm=TRUE))
}
}
head(p.vals.ISMvsINS)
table(p.vals.ISMvsINS < 0.05)
table(padj.vals.ISMvsINS < 0.05)
head(fc.vals.ISMvsINS)
# Adding p-values and fold change to normalized data
data_norm_filter@elementMetadata@listData$p.vals.ISMvsINS <-
p.vals.ISMvsINS$p.vals.median
data_norm_filter@elementMetadata@listData$padj.vals.ISMvsINS <-
padj.vals.ISMvsINS$padj.vals.median
data_norm_filter@elementMetadata@listData$fc.vals.ISMvsINS <-
fc.vals.ISMvsINS$fc.vals.median
# Finding median p-values and median fold changes testing all conditions
# against each other
all_sigs <- data.frame()
BSA_vs_ISM1_diffs <- data.frame()
BSA_vs_INS_diffs <- data.frame()
INS_vs_ISM1_diffs <- data.frame()
pp_name <- data.frame(pp_name=data_norm_filter@elementMetadata@listData$name)
permutations <- 200
for (i in 1:permutations){
data_imp <- impute(data_norm_filter, fun = "MinProb", q = 0.01)
data_diff <- suppressMessages(test_diff(data_imp, type = "all"))
data_diff <- add_rejections(data_diff)
all_sig <- data_diff@elementMetadata@listData$significant
BSA_vs_ISM1_diff <- data_diff@elementMetadata@listData$BSA_vs_ISM1_diff
BSA_vs_INS_diff <- data_diff@elementMetadata@listData$BSA_vs_INS_diff
INS_vs_ISM1_diff <- data_diff@elementMetadata@listData$INS_vs_ISM1_diff
if (i==1){
all_sigs <- cbind(pp_name,all_sig)
BSA_vs_ISM1_diffs <- cbind(pp_name,BSA_vs_ISM1_diff)
BSA_vs_INS_diffs <- cbind(pp_name,BSA_vs_INS_diff)
INS_vs_ISM1_diffs <- cbind(pp_name,INS_vs_ISM1_diff)
}
if (i>1){
all_sigs <- cbind(all_sigs,all_sig)
BSA_vs_ISM1_diffs <- cbind(BSA_vs_ISM1_diffs,BSA_vs_ISM1_diff)
BSA_vs_INS_diffs <- cbind(BSA_vs_INS_diffs,BSA_vs_INS_diff)
INS_vs_ISM1_diffs <- cbind(INS_vs_ISM1_diffs,INS_vs_ISM1_diff)
}
if (i %% 10 ==0) print(i)
if (i==permutations){
all_sigs <- data.frame(pp_name,
sig.all.median=apply(all_sigs[,2:permutations], 1,
FUN = median,na.rm=TRUE))
BSA_vs_ISM1_diffs <- data.frame(pp_name,
BSA_vs_ISM1_diff=apply(BSA_vs_ISM1_diffs[,2:permutations], 1,
FUN = median,na.rm=TRUE))
BSA_vs_INS_diffs <- data.frame(pp_name,
BSA_vs_INS_diff=apply(BSA_vs_INS_diffs[,2:permutations], 1,
FUN = median,na.rm=TRUE))
INS_vs_ISM1_diffs <- data.frame(pp_name,
INS_vs_ISM1_diff=apply(INS_vs_ISM1_diffs[,2:permutations], 1,
FUN = median,na.rm=TRUE))
}
}
head(all_sigs)
table(all_sigs$sig.all.median)
head(BSA_vs_ISM1_diffs[all_sigs$sig.all.median,])
head(BSA_vs_INS_diffs[all_sigs$sig.all.median,])
head(INS_vs_ISM1_diffs[all_sigs$sig.all.median,])
# Adding p-values and fold change to normalized data
data_norm_filter@elementMetadata@listData$significant <- all_sigs$sig.all.median
data_norm_filter@elementMetadata@listData$BSA_vs_ISM1_diff <-
BSA_vs_ISM1_diffs$BSA_vs_ISM1_diff
data_norm_filter@elementMetadata@listData$BSA_vs_INS_diff <-
BSA_vs_INS_diffs$BSA_vs_INS_diff
data_norm_filter@elementMetadata@listData$INS_vs_ISM1_diff <-
INS_vs_ISM1_diffs$INS_vs_ISM1_diff
# Saving data including permuted statistical differences
saveRDS(data_norm_filter,file="pp_norm_log_filter.rds")