forked from uwnlp/open_type
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
280 lines (246 loc) · 11.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python3
import datetime
import gc
import logging
import pickle
import os
import sys
import time, json
import torch
import data_utils
import models
from data_utils import to_torch
from eval_metric import mrr
from model_utils import get_gold_pred_str, get_eval_string, get_output_index
from tensorboardX import SummaryWriter
from torch import optim
sys.path.insert(0, './resources')
import config_parser, eval_metric
from resources import constant
class TensorboardWriter:
"""
Wraps a pair of ``SummaryWriter`` instances but is a no-op if they're ``None``.
Allows Tensorboard logging without always checking for Nones first.
"""
def __init__(self, train_log: SummaryWriter = None, validation_log: SummaryWriter = None) -> None:
self._train_log = train_log
self._validation_log = validation_log
def add_train_scalar(self, name: str, value: float, global_step: int) -> None:
if self._train_log is not None:
self._train_log.add_scalar(name, value, global_step)
def add_validation_scalar(self, name: str, value: float, global_step: int) -> None:
if self._validation_log is not None:
self._validation_log.add_scalar(name, value, global_step)
def get_data_gen(dataname, mode, args, vocab_set, goal):
dataset = data_utils.TypeDataset(constant.FILE_ROOT + dataname, lstm_type=args.lstm_type,
goal=goal, vocab=vocab_set)
if mode == 'train':
data_gen = dataset.get_batch(args.batch_size, args.num_epoch, forever=False, eval_data=False,
simple_mention=not args.enhanced_mention)
elif mode == 'dev':
data_gen = dataset.get_batch(args.eval_batch_size, 1, forever=True, eval_data=True,
simple_mention=not args.enhanced_mention)
else:
data_gen = dataset.get_batch(args.eval_batch_size, 1, forever=False, eval_data=True,
simple_mention=not args.enhanced_mention)
return data_gen
def get_joint_datasets(args):
vocab = data_utils.get_vocab()
train_gen_list = []
valid_gen_list = []
if args.mode == 'train':
if not args.remove_open and not args.only_crowd:
train_gen_list.append(
#`("open", get_data_gen('train/open*.json', 'train', args, vocab, "open")))
("open", get_data_gen('distant_supervision/headwords.json', 'train', args, vocab, "open")))
valid_gen_list.append(("open", get_data_gen('distant_supervision/headword_dev.json', 'dev', args, vocab, "open")))
if not args.remove_el and not args.only_crowd:
valid_gen_list.append(
("wiki",
get_data_gen('distant_supervision/el_dev.json', 'dev', args, vocab, "wiki" if args.multitask else "open")))
train_gen_list.append(
("wiki",
get_data_gen('distant_supervision/el_train.json', 'train', args, vocab, "wiki" if args.multitask else "open")))
#get_data_gen('train/el_train.json', 'train', args, vocab, "wiki" if args.multitask else "open")))
if args.add_crowd or args.only_crowd:
train_gen_list.append(
("open", get_data_gen('crowd/train_m.json', 'train', args, vocab, "open")))
crowd_dev_gen = get_data_gen('crowd/dev.json', 'dev', args, vocab, "open")
return train_gen_list, valid_gen_list, crowd_dev_gen
def get_datasets(data_lists, args):
data_gen_list = []
vocab_set = data_utils.get_vocab()
for dataname, mode, goal in data_lists:
data_gen_list.append(get_data_gen(dataname, mode, args, vocab_set, goal))
return data_gen_list
def _train(args):
if args.data_setup == 'joint':
train_gen_list, val_gen_list, crowd_dev_gen = get_joint_datasets(args)
else:
train_fname = args.train_data
dev_fname = args.dev_data
data_gens = get_datasets([(train_fname, 'train', args.goal),
(dev_fname, 'dev', args.goal)], args)
train_gen_list = [(args.goal, data_gens[0])]
val_gen_list = [(args.goal, data_gens[1])]
train_log = SummaryWriter(os.path.join(constant.EXP_ROOT, args.model_id, "log", "train"))
validation_log = SummaryWriter(os.path.join(constant.EXP_ROOT, args.model_id, "log", "validation"))
tensorboard = TensorboardWriter(train_log, validation_log)
model = models.Model(args, constant.ANSWER_NUM_DICT[args.goal])
model.cuda()
total_loss = 0
batch_num = 0
start_time = time.time()
init_time = time.time()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
if args.load:
load_model(args.reload_model_name, constant.EXP_ROOT, args.model_id, model, optimizer)
for idx, m in enumerate(model.modules()):
logging.info(str(idx) + '->' + str(m))
while True:
batch_num += 1 # single batch composed of all train signal passed by.
for (type_name, data_gen) in train_gen_list:
try:
batch = next(data_gen)
batch, _ = to_torch(batch)
except StopIteration:
logging.info(type_name + " finished at " + str(batch_num))
torch.save({'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()},
'{0:s}/{1:s}.pt'.format(constant.EXP_ROOT, args.model_id))
return
optimizer.zero_grad()
loss, output_logits = model(batch, type_name)
loss.backward()
total_loss += loss.data.cpu()[0]
optimizer.step()
if batch_num % args.log_period == 0 and batch_num > 0:
gc.collect()
cur_loss = float(1.0 * loss.data.cpu().clone()[0])
elapsed = time.time() - start_time
train_loss_str = ('|loss {0:3f} | at {1:d}step | @ {2:.2f} ms/batch'.format(cur_loss, batch_num,
elapsed * 1000 / args.log_period))
start_time = time.time()
print(train_loss_str)
logging.info(train_loss_str)
tensorboard.add_train_scalar('train_loss_' + type_name, cur_loss, batch_num)
if batch_num % args.eval_period == 0 and batch_num > 0:
output_index = get_output_index(output_logits)
gold_pred_train = get_gold_pred_str(output_index, batch['y'].data.cpu().clone(), args.goal)
accuracy = sum([set(y) == set(yp) for y, yp in gold_pred_train]) * 1.0 / len(gold_pred_train)
train_acc_str = '{1:s} Train accuracy: {0:.1f}%'.format(accuracy * 100, type_name)
print(train_acc_str)
logging.info(train_acc_str)
tensorboard.add_train_scalar('train_acc_' + type_name, accuracy, batch_num)
for (val_type_name, val_data_gen) in val_gen_list:
if val_type_name == type_name:
eval_batch, _ = to_torch(next(val_data_gen))
evaluate_batch(batch_num, eval_batch, model, tensorboard, val_type_name, args.goal)
if batch_num % args.eval_period == 0 and batch_num > 0 and args.data_setup == 'joint':
# Evaluate Loss on the Turk Dev dataset.
print('---- eval at step {0:d} ---'.format(batch_num))
feed_dict = next(crowd_dev_gen)
eval_batch, _ = to_torch(feed_dict)
crowd_eval_loss = evaluate_batch(batch_num, eval_batch, model, tensorboard, "open", args.goal)
if batch_num % args.save_period == 0 and batch_num > 0:
save_fname = '{0:s}/{1:s}_{2:d}.pt'.format(constant.EXP_ROOT, args.model_id, batch_num)
torch.save({'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()}, save_fname)
print(
'Total {0:.2f} minutes have passed, saving at {1:s} '.format((time.time() - init_time) / 60, save_fname))
# Training finished!
torch.save({'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()},
'{0:s}/{1:s}.pt'.format(constant.EXP_ROOT, args.model_id))
def evaluate_batch(batch_num, eval_batch, model, tensorboard, val_type_name, goal):
model.eval()
loss, output_logits = model(eval_batch, val_type_name)
output_index = get_output_index(output_logits)
eval_loss = loss.data.cpu().clone()[0]
eval_loss_str = 'Eval loss: {0:.7f} at step {1:d}'.format(eval_loss, batch_num)
gold_pred = get_gold_pred_str(output_index, eval_batch['y'].data.cpu().clone(), goal)
eval_accu = sum([set(y) == set(yp) for y, yp in gold_pred]) * 1.0 / len(gold_pred)
tensorboard.add_validation_scalar('eval_acc_' + val_type_name, eval_accu, batch_num)
tensorboard.add_validation_scalar('eval_loss_' + val_type_name, eval_loss, batch_num)
eval_str = get_eval_string(gold_pred)
print(val_type_name + ":" +eval_loss_str)
print(gold_pred[:3])
print(val_type_name+":"+ eval_str)
logging.info(val_type_name + ":" + eval_loss_str)
logging.info(val_type_name +":" + eval_str)
model.train()
return eval_loss
def load_model(reload_model_name, save_dir, model_id, model, optimizer=None):
if reload_model_name:
model_file_name = '{0:s}/{1:s}.pt'.format(save_dir, reload_model_name)
else:
model_file_name = '{0:s}/{1:s}.pt'.format(save_dir, model_id)
checkpoint = torch.load(model_file_name)
model.load_state_dict(checkpoint['state_dict'])
if optimizer:
optimizer.load_state_dict(checkpoint['optimizer'])
else:
total_params = 0
# Log params
for k in checkpoint['state_dict']:
elem = checkpoint['state_dict'][k]
param_s = 1
for size_dim in elem.size():
param_s = size_dim * param_s
print(k, elem.size())
total_params += param_s
param_str = ('Number of total parameters..{0:d}'.format(total_params))
logging.info(param_str)
print(param_str)
logging.info("Loading old file from {0:s}".format(model_file_name))
print('Loading model from ... {0:s}'.format(model_file_name))
def _test(args):
assert args.load
test_fname = args.eval_data
data_gens = get_datasets([(test_fname, 'test', args.goal)], args)
model = models.Model(args, constant.ANSWER_NUM_DICT[args.goal])
model.cuda()
model.eval()
load_model(args.reload_model_name, constant.EXP_ROOT, args.model_id, model)
for name, dataset in [(test_fname, data_gens[0])]:
print('Processing... ' + name)
total_gold_pred = []
total_annot_ids = []
total_probs = []
total_ys = []
for batch_num, batch in enumerate(dataset):
eval_batch, annot_ids = to_torch(batch)
loss, output_logits = model(eval_batch, args.goal)
output_index = get_output_index(output_logits)
output_prob = model.sigmoid_fn(output_logits).data.cpu().clone().numpy()
y = eval_batch['y'].data.cpu().clone().numpy()
gold_pred = get_gold_pred_str(output_index, y, args.goal)
total_probs.extend(output_prob)
total_ys.extend(y)
total_gold_pred.extend(gold_pred)
total_annot_ids.extend(annot_ids)
mrr_val = mrr(total_probs, total_ys)
print('mrr_value: ', mrr_val)
pickle.dump({'gold_id_array': total_ys, 'pred_dist': total_probs},
open('./{0:s}.p'.format(args.reload_model_name), "wb"))
with open('./{0:s}.json'.format(args.reload_model_name), 'w') as f_out:
output_dict = {}
for a_id, (gold, pred) in zip(total_annot_ids, total_gold_pred):
output_dict[a_id] = {"gold": gold, "pred": pred}
json.dump(output_dict, f_out)
eval_str = get_eval_string(total_gold_pred)
print(eval_str)
logging.info('processing: ' + name)
logging.info(eval_str)
if __name__ == '__main__':
config = config_parser.parser.parse_args()
torch.cuda.manual_seed(config.seed)
logging.basicConfig(
filename=constant.EXP_ROOT +"/"+ config.model_id + datetime.datetime.now().strftime("_%m-%d_%H") + config.mode + '.txt',
level=logging.INFO, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M')
logging.info(config)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if config.mode == 'train':
_train(config)
elif config.mode == 'test':
_test(config)
else:
raise ValueError("invalid value for 'mode': {}".format(config.mode))