You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hey i trying to train this model using my dataset, but i got this error in second step, how can i solve this problem?
ValueError Traceback (most recent call last)
Cell In[22], line 2
1 if name == "main":
----> 2 main()
Cell In[21], line 526
524 # Train the model!
525 accelerator.print("Starting training!")
--> 526 trainer.train()
528 # Clean up and wait for other processes to finish (loggers etc.)
529 if accelerator.is_main_process:
File e:\Tugas Akhir\muse2\muse_maskgit_pytorch\trainers\maskgit_trainer.py:165, in MaskGitTrainer.train(self)
160 text_embeds = t5_encode_text_from_encoded(
161 input_ids, attn_mask, self.model.transformer.t5, self.accelerator.device
162 )
164 with self.accelerator.accumulate(self.model), self.accelerator.autocast():
--> 165 loss = self.model(imgs, text_embeds=text_embeds)
166 self.accelerator.backward(loss)
167 if self.max_grad_norm is not None and self.accelerator.sync_gradients:
File e:\Anaconda3\Lib\site-packages\torch\nn\modules\module.py:1520, in Module._call_impl(self, *args, **kwargs)
1515 # If we don't have any hooks, we want to skip the rest of the logic in
1516 # this function, and just call forward.
1517 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1518 or _global_backward_pre_hooks or _global_backward_hooks
1519 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1520 return forward_call(*args, **kwargs)
1522 try:
1523 result = None
File e:\Anaconda3\Lib\site-packages\torch\amp\autocast_mode.py:16, in autocast_decorator..decorate_autocast(*args, **kwargs)
13 @functools.wraps(func)
14 def decorate_autocast(*args, **kwargs):
15 with autocast_instance:
---> 16 return func(*args, **kwargs)
File <@beartype(muse_maskgit_pytorch.muse_maskgit_pytorch.MaskGit.forward) at 0x207570d2ac0>:134, in forward(__beartype_object_2230262900624, __beartype_get_violation, __beartype_conf, __beartype_object_2230548286144, __beartype_object_140704628379520, __beartype_getrandbits, __beartype_func, *args, **kwargs)
File e:\Tugas Akhir\muse2\muse_maskgit_pytorch\muse_maskgit_pytorch.py:640, in MaskGit.forward(self, images_or_ids, ignore_index, cond_images, cond_token_ids, texts, text_embeds, cond_drop_prob, train_only_generator, sample_temperature)
638 if not all([height_or_width == self.image_size for height_or_width in images_or_ids.shape[-2:]]):
639 print(images_or_ids.shape[-2:])
--> 640 raise ValueError("the image you passed in is not of the correct dimensions")
642 with torch.no_grad():
643 _, ids, _ = self.vae.encode(images_or_ids)
ValueError: the image you passed in is not of the correct dimensions
The text was updated successfully, but these errors were encountered:
Hey i trying to train this model using my dataset, but i got this error in second step, how can i solve this problem?
ValueError Traceback (most recent call last)
Cell In[22], line 2
1 if name == "main":
----> 2 main()
Cell In[21], line 526
524 # Train the model!
525 accelerator.print("Starting training!")
--> 526 trainer.train()
528 # Clean up and wait for other processes to finish (loggers etc.)
529 if accelerator.is_main_process:
File e:\Tugas Akhir\muse2\muse_maskgit_pytorch\trainers\maskgit_trainer.py:165, in MaskGitTrainer.train(self)
160 text_embeds = t5_encode_text_from_encoded(
161 input_ids, attn_mask, self.model.transformer.t5, self.accelerator.device
162 )
164 with self.accelerator.accumulate(self.model), self.accelerator.autocast():
--> 165 loss = self.model(imgs, text_embeds=text_embeds)
166 self.accelerator.backward(loss)
167 if self.max_grad_norm is not None and self.accelerator.sync_gradients:
File e:\Anaconda3\Lib\site-packages\torch\nn\modules\module.py:1511, in Module._wrapped_call_impl(self, *args, **kwargs)
1509 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
1510 else:
-> 1511 return self._call_impl(*args, **kwargs)
File e:\Anaconda3\Lib\site-packages\torch\nn\modules\module.py:1520, in Module._call_impl(self, *args, **kwargs)
1515 # If we don't have any hooks, we want to skip the rest of the logic in
1516 # this function, and just call forward.
1517 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
1518 or _global_backward_pre_hooks or _global_backward_hooks
1519 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1520 return forward_call(*args, **kwargs)
1522 try:
1523 result = None
File e:\Anaconda3\Lib\site-packages\accelerate\utils\operations.py:825, in convert_outputs_to_fp32..forward(*args, **kwargs)
824 def forward(*args, **kwargs):
--> 825 return model_forward(*args, **kwargs)
File e:\Anaconda3\Lib\site-packages\accelerate\utils\operations.py:813, in ConvertOutputsToFp32.call(self, *args, **kwargs)
812 def call(self, *args, **kwargs):
--> 813 return convert_to_fp32(self.model_forward(*args, **kwargs))
File e:\Anaconda3\Lib\site-packages\torch\amp\autocast_mode.py:16, in autocast_decorator..decorate_autocast(*args, **kwargs)
13 @functools.wraps(func)
14 def decorate_autocast(*args, **kwargs):
15 with autocast_instance:
---> 16 return func(*args, **kwargs)
File <@beartype(muse_maskgit_pytorch.muse_maskgit_pytorch.MaskGit.forward) at 0x207570d2ac0>:134, in forward(__beartype_object_2230262900624, __beartype_get_violation, __beartype_conf, __beartype_object_2230548286144, __beartype_object_140704628379520, __beartype_getrandbits, __beartype_func, *args, **kwargs)
File e:\Tugas Akhir\muse2\muse_maskgit_pytorch\muse_maskgit_pytorch.py:640, in MaskGit.forward(self, images_or_ids, ignore_index, cond_images, cond_token_ids, texts, text_embeds, cond_drop_prob, train_only_generator, sample_temperature)
638 if not all([height_or_width == self.image_size for height_or_width in images_or_ids.shape[-2:]]):
639 print(images_or_ids.shape[-2:])
--> 640 raise ValueError("the image you passed in is not of the correct dimensions")
642 with torch.no_grad():
643 _, ids, _ = self.vae.encode(images_or_ids)
ValueError: the image you passed in is not of the correct dimensions
The text was updated successfully, but these errors were encountered: